Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(23): eadk6452, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838140

ABSTRACT

Self-assemblies of anisotropic colloidal particles into colloidal liquid crystals and well-defined superlattices are of great interest for hierarchical nanofabrications that are applicable for various functional materials. Inorganic nanosheets obtained by exfoliation of layered crystals have been highlighted as the intriguing colloidal units; however, the size polydispersity of the nanosheets has been preventing precise design of the assembled structures and their functions. Here, we demonstrate that the anionic titanate nanosheets with monodisperse size reversibly form very unusual superstructured mesophases through finely tunable weak attractive interactions between the nanosheets. Transmission electron microscopy, polarizing optical microscopy, small-angle x-ray scattering, and confocal laser scanning microscopy clarified the reversible formation of the mesophases (columnar nanofibers, columnar nematic liquid crystals, and columnar nanofiber bundles) as controlled by counter cations, nanosheet concentration, solvent, and temperature.

2.
Small Methods ; : e2300353, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37665220

ABSTRACT

Free-standing zinc oxide in the forms of films and fibrous materials are expected to be used as functional devices such as piezoelectric devices and catalyst filters without being limited by the growth substrate. Herein, a synthetic morphology-control method for 2D and 1D free-standing ZnO materials with ordered and nanoporous structures by conversion of liquid-crystalline (LC) zinc hydroxide carbonate (ZHC) nanoplates is reported. As a new colloidal liquid crystal, the LC ZHC nanoplate precursors are obtained by a biomineralization-inspired method. The approach is to control the morphology and crystallographic orientation of ZHC crystals by using acidic macromolecules. Their nano-scale and oriented structures are examined. The LC oriented ZHC nanoplates have led to the synthesis of free-standing films and microfibers of ZHC in centimeter-level lengths, with the successful thermal conversion into free-standing films and microfibers of ZnO. The resultant ZnO films and ZnO microfibers have nanoporous structures and preferential crystallographic orientations that preserve the alignment of ZHC nanoplates before conversion.

3.
ACS Omega ; 7(7): 6070-6074, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35224368

ABSTRACT

Clay mineral nanosheet colloids were found to show angular-independent structural colors after desalting. Naked-eye observation and UV-visible reflectance spectra showed that the color is tuned by varying the average nanosheet size and nanosheet concentration. The low angular-dependence of the structural color was also clarified by these observations, which is the first case for a nanosheet system. The present system is expected as an environmentally benign and low-cost structural color material for various applications.

4.
Angew Chem Int Ed Engl ; 60(15): 8466-8471, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33480099

ABSTRACT

Structural color colloidal sols of perovskite nanosheets were synthesized and were immobilized in a polymer hydrogel film by in situ photopolymerization, leading to a novel mechanochromic material. Visible absorption spectroscopy, polarized optical microscopy and small-angle X-ray scattering revealed that the nanosheets are aligned parallel to the film surface with the periodic distance of up to ca. 300 nm, giving the structural color tunable over full color range. The present structural color gel showed reversible mechanochromic response that detects weak stress of 1 kPa with the quick response time less than 1 ms as well as high mechanical toughness (compressive breaking stress of up to 3 MPa). These excellent properties are suitable for applications for mechano-sensors and displays.

5.
Small ; 16(23): e2001721, 2020 06.
Article in English | MEDLINE | ID: mdl-32363808

ABSTRACT

To obtain high quality of drinking water free from biocontaminants is especially important issue. A new strategy employing smectic liquid-crystalline ionic membranes exhibiting 2D structures of layered nanochannels for water treatment is proposed for efficient virus removal and sufficient water flux. The smectic A (SmA) liquid-crystalline membranes obtained by in situ polymerization of an ionic mesogenic monomer are examined for removal of three distinct viruses with small size: Qß bacteriophage, MS2 bacteriophage, and Aichi virus. The semi-bilayer structure of the SmA significantly obstructs the virus penetration with an average log reduction value of 7.3 log10 or the equivalent of reducing 18 million viruses down to 1. Furthermore, the layered nanochannels of the SmA liquid crystal allow efficient water permeation compared to other types of liquid-crystalline membrane consisting of nanopores.


Subject(s)
Liquid Crystals , Nanostructures , Viruses , Water Purification , Membranes, Artificial
6.
PLoS One ; 15(4): e0231352, 2020.
Article in English | MEDLINE | ID: mdl-32275729

ABSTRACT

We report the formation of spherulites from droplets of highly concentrated tubulin solution via nucleation and subsequent polymerization to microtubules (MTs) under water evaporation by heating. Radial alignment of MTs in the spherulites was confirmed by the optical properties of the spherulites observed using polarized optical microscopy and fluorescence microscopy. Temperature and concentration of tubulins were found as important parameters to control the spherulite pattern formation of MTs where evaporation plays a significant role. The alignment of MTs was regulated reversibly by temperature induced polymerization and depolymerization of tubulins. The formation of the MTs patterns was also confirmed at the molecular level from the small angle X-ray measurements. This work provides a simple method for obtaining radially aligned arrays of MTs.


Subject(s)
Microtubules/chemistry , Tubulin/chemistry , Animals , Hot Temperature , Microtubules/metabolism , Polymerization , Swine , Tubulin/metabolism , Volatilization , Water/chemistry
7.
Langmuir ; 35(45): 14543-14552, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31639309

ABSTRACT

Inorganic layered materials can be converted to colloidal liquid crystals through exfoliation into inorganic nanosheets, and binary nanosheet colloids exhibit rich phase behavior characterized by multiphase coexistence. In particular, niobate-clay binary nanosheet colloids are characterized by phase separation at a mesoscopic (∼several tens of micrometers) scale whereas they are apparently homogeneous at a macroscopic scale. Although the mesoscopic structure of the niobate-clay binary colloid is advantageous to realize unusual photochemical functions, the structure itself has not been clearly demonstrated in real space. The present study investigated the structure of niobate-clay binary nanosheet colloids in detail. Four clay nanosheets (hectorite, saponite, fluorohectorite, and tetrasilisic mica) with different lateral sizes were compared. Small-angle X-ray scattering (SAXS) indicated lamellar ordering of niobate nanosheets in the binary colloid. The basal spacing of the lamellar phase was reduced by increasing the concentration of clay nanosheets, indicating the compression of the liquid crystalline niobate phase by the isotropic clay phase. Scattering and fluorescence microscope observations using confocal laser scanning microscopy (CLSM) demonstrated the phase separation of niobate and clay nanosheets in real space. Niobate nanosheets assembled into domains of several tens of micrometers whereas clay nanosheets were located in voids between the niobate domains. The results clearly confirmed the spatial separation of two nanosheets and the phase separation at a mesoscopic scale. Distribution of clay nanosheets is dependent on the employed clay nanosheets; the nanosheets with large lateral length are more localized or assembled. This is in harmony with larger basal spacings of niobate lamellar phase for large clay particles. Although three-dimensional compression of the niobate phase by the coexisting clay phase was observed at low clay concentrations, the basal spacing of niobate phase was almost constant irrespective of niobate concentrations at high clay concentrations, which was ascribed to competition of compression by clay phase and restoring of the niobate phase.

8.
ACS Omega ; 3(11): 14869-14874, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30555995

ABSTRACT

Here, we demonstrate the novel double-component liquid crystalline colloids composed of mesogenic inorganic nanosheets and the rods with dynamically variable length controlled by temperature. As the length-controllable rod, stiff biopolymer microtubule is used, which was successfully polymerized/depolymerized from tubulin proteins through a biochemical process even in the presence of the nanosheets. The mesoscopic structure of the liquid crystal phase was reversibly modifiable as caused by the change of the rod length.

9.
J Nanosci Nanotechnol ; 18(1): 86-89, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29768816

ABSTRACT

Here we have been focusing on mesoporous silica (MPS) as inorganic filler material to improve the mechanical strength of silicone rubbers. The MPS particles are more effective in reducing the coefficient of thermal expansion (CTE) and hardening silicone rubber composites when compared to commercially available nonporous silica particles. In this study, we utilize ultraviolet curing type silicone rubbers and prepare MPS composites according to a simple single-step method. From an industrial viewpoint, simplifying the fabrication processes is critical. The thermal stability and mechanical strength are examined in detail in order to showcase the effectiveness of MPS particles as filler materials.

10.
Sci Rep ; 8(1): 4367, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29531235

ABSTRACT

Exploring the interaction of nucleic acids with clay minerals is important to understand such issues as the persistence in soils of biomolecules and the appearance of genetic polymers in prebiotic environments. Colloidal dispersions of double stranded DNA and clay nanosheets may also provide interesting model systems to study the statistical physics of mixtures of semi-flexible rods and plates. Here, we show that adding very small amounts of DNA to liquid-crystalline montmorillonite and beidellite smectite clay suspensions strongly widens the isotropic/nematic phase coexistence region. Moreover, a spectroscopic study shows that, upon DNA addition, the first DNA molecules adsorb onto the clay particles. Remarkably, synchrotron small-angle X-ray scattering experiments reveal that the average distance between the clay sheets, in the nematic phase at coexistence, decreases with increasing DNA concentration and that the inhibition of swelling by DNA becomes almost independent of clay concentration. We interpret this DNA-mediated attraction between clay nanosheets by bridging conformations of DNA strands (plates on a string structure). In addition to bridging, DNA chains can form "loops" between sections adsorbed on the same particle, giving rise to sheet repulsions due to protruding loops. This interpretation agrees with the observed inter-clay spacings being dependent only on the DNA concentration.


Subject(s)
Clay/chemistry , DNA/chemistry , Aluminum Silicates/chemistry , Bentonite/chemistry , Colloids , Liquid Crystals , Molecular Conformation , Nanostructures , Nucleic Acid Conformation , Soil/chemistry
11.
J Phys Chem B ; 122(11): 2957-2961, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29455532

ABSTRACT

Anisotropic chemical wave propagation of self-oscillating Belousov-Zhabotinsky (BZ) reaction was demonstrated in the poly( N-isopropylacrylamide) gel films embedded with macroscopically aligned liquid crystalline inorganic nanosheets. Although the average propagation rate of chemical wave v̅ was 3.56 mm min-1 in the gels without nanosheets, the propagation was retarded in the gels with 1 wt % of nanosheets: [Formula: see text] = 1.89 mm min-1 and [Formula: see text] = 1.33 mm min-1 along the direction parallel and perpendicular to the nanosheet planes, respectively. Thus, the wave propagation is anisotropic with the anisotropy ratio [Formula: see text] = 1.42 in these gels and the periodic patterns formed by the BZ reaction were concentric ellipses, different from circles seen in isotropic gels. Furthermore, the propagation rate and degree of anisotropy were controllable by nanosheet concentration. These phenomena can be explained that the diffusion of molecules inside the gel is effectively hindered along the direction perpendicular to the nanosheet planes due to the very large aspect ratio of the aligned nanosheets. The present systems will be applicable for anisotropic self-oscillating soft actuators with one-dimensional motions as well as for ideal model system of BZ reactions.

12.
Dalton Trans ; 47(9): 3022-3028, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29114667

ABSTRACT

Osmotic swelling behaviors in layered perovskite niobate were examined in aqueous solutions containing three types of amine-related agents including quaternary ammonium hydroxides and tertiary aminoethanol. Platelet microcrystals of a protonated layered perovskite niobate, HCa2Nb3O10·1.5H2O, were found to show enormous swelling in the aqueous solutions, which was clearly recognized by the noticeable expansion of the sample volume over 100-fold. Optical microscopy observations revealed that the crystals underwent accordion-like elongation in the layer-stacking direction up to several ten-fold the initial thickness. Small-angle X-ray scattering measurements of swollen samples indicate the expansion of interlayer separation ranging from ∼20 nm to over 100 nm, which is primarily governed by the concentrations of the amine-related agents. The magnitudes of the interlayer separation were comparable to those of the macroscopic swelling. The degree of swelling was progressively suppressed with further increasing concentration, and this suppression trend was related to the amines.

13.
R Soc Open Sci ; 4(12): 171117, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29308249

ABSTRACT

A composite gel composed of a water-soluble aromatic polyamide hydrogelator and the nanosheet Laponite®, a synthetic layered silicate, was produced and found to exhibit thixotropic behaviour. Whereas the composite gel contains the gelator at the same concentration as the molecular gel made by the gelator only, the composite gel becomes a softer thixotropic gel compared to the molecular gel made by the gelator only. The reason for this could be that bundles of polymer gelator may be loosened and the density of the polymer network increased in the presence of Laponite.

14.
Phys Chem Chem Phys ; 18(24): 16466-75, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27265120

ABSTRACT

A one-pot synthesis method for the fabrication of biomass-derived activated carbon-zinc oxide (ZAC) nanocomposites using sugarcane bagasse as a carbon precursor and ZnCl2 as an activating agent is reported. For the first time, we used ZnCl2 as not only an activating agent and also for the synthesis of ZnO nanoparticles on the AC surface. ZAC materials with varying ZnO loading were prepared and characterized by a variety of analytical and spectroscopic techniques such as FE-SEM, FE-TEM, XRD, EA, XPS, and Raman spectroscopy. ZAC-modified glassy carbon electrodes (GCEs) were found to exhibit remarkable electrochemical properties for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) as well as hazardous pollutants such as hydrogen peroxide (H2O2) and hydrazine (N2H4) with desirable sensitivity, selectivity, and detection limits. Moreover, ZAC-modified stainless steel electrodes also showed superior performances for supercapacitor applications. The ZAC nanocomposites, which may be mass produced by the reported facile direct route from sugarcane bagasse, are not only eco-friendly but also cost-effective, and thus, are suitable as a practical platform for bio-sensing and energy storage applications.


Subject(s)
Biosensing Techniques , Carbon/chemistry , Electric Power Supplies , Nanocomposites/chemistry , Zinc Oxide/chemistry , Ascorbic Acid/analysis , Cellulose/chemistry , Chlorides/chemistry , Dopamine/analysis , Electric Capacitance , Electrodes , Green Chemistry Technology , Hydrazines/analysis , Hydrogen Peroxide/analysis , Limit of Detection , Particle Size , Porosity , Saccharum , Uric Acid/analysis , Zinc Compounds/chemistry , Zinc Oxide/chemical synthesis
15.
Chem Commun (Camb) ; 51(96): 17068-71, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26439314

ABSTRACT

Platelet crystals of a layered perovskite showed massive accordion-like swelling in a tetrabutylammonium hydroxide solution. The permeation of the solution induced the huge expansion of the interlayer spacing as well as the crystal thickness up to 50-fold, leading to a very high water content of >90 wt%.

16.
J Am Chem Soc ; 137(36): 11558-61, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26307655

ABSTRACT

Palladium (Pd) films with perpendicularly aligned mesochannels are expected to provide fascinating electrocatalytic properties due to their low diffusion resistance and the full utilization of their large surface area. There have been no studies on such mesoporous metal films, because of the difficulties in controlling both the vertical alignment of the molecular template and the crystal growth in the metallic pore walls. Here we report an effective approach for the synthesis of mesoporous Pd films with mesochannels perpendicularly aligned to the substrate by an elaborated electrochemical deposition. The films show a superior electrocatalytic activity by taking full advantage of the perpendicularly aligned mesochannels.

17.
Angew Chem Int Ed Engl ; 54(14): 4222-5, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25737396

ABSTRACT

Here we propose a novel way to construct mesoporous architectures through evaporation-induced assembly of polymeric micelles with crystalline nanosheets. As a model study, we used niobate nanosheets exfoliated by the direct reaction of K4Nb6O17⋅3 H2O crystals with an aqueous solution of propylamine. The electrostatic interaction between negatively charged nanosheets and positively charged polymeric micelles enable us to form composite micelles with the nanosheets. Removal of the micelles by calcination results in robust mesoporous oxides with the original crystalline structure.

18.
Chem Commun (Camb) ; 51(7): 1230-3, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25472911

ABSTRACT

The drying process of clear precursor solutions for fabricating highly porous titania films was observed by CLSM. Further, we succeeded in detecting the formation of micelles in the precursor solution containing high-molecular-weight PS-b-PEO diblock copolymers at the initial stage of the drying process as the direct evidence that this synthesis consisted of the EISA process.

19.
Chemistry ; 20(46): 14955-8, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25296698

ABSTRACT

Here it is demonstrated that mesoporous silicas (MPSs) can be used as effective "topological crosslinkers" for poly(N-isopropylacrylamide) (PNIPA) hydrogels to improve the mechanical property. Three-dimensional bicontinuous mesporous silica is found to effectively reinforce the PNIPA hydrogels, as compared to nonporous silica and two-dimensional hexagonally ordered mesoporous silica.

20.
Article in English | MEDLINE | ID: mdl-25228493

ABSTRACT

Poly-(N-isopropylacrylamide) (PNIPA) hydrogel films doped with uniaxially aligned liquid crystalline (LC) nanosheets adsorbed with a dye are synthesized and its anomalous photothermal deformation is demonstrated. The alignment of the nanosheet LC at the cm-scale is easily achieved by the application of an in-plane or out-of-plane AC electric field during photo-polymerization. A photoresponsive pattern is printable onto the gel with µm-scale resolution by adsorption of the dye through a pattern-holed silicone rubber. When the gel is irradiated with light, only the colored part is photothermally deformed. Interestingly, the photo-irradiated gel shows temporal expansion along one direction followed by anisotropic shrinkage, which is an anomalous behavior for a conventional PNIPA gel.

SELECTION OF CITATIONS
SEARCH DETAIL
...