Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Brain Behav ; 15(5): 474-90, 2016 06.
Article in English | MEDLINE | ID: mdl-27063791

ABSTRACT

Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.


Subject(s)
Alcohol Drinking/genetics , Corpus Striatum/metabolism , Gene Regulatory Networks , Physical Exertion/genetics , Transcriptome , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins , Calmodulin-Binding Proteins/metabolism , Corpus Striatum/physiology , Female , GABA Plasma Membrane Transport Proteins/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Running , Syntaxin 1/genetics , Syntaxin 1/metabolism , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...