Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 35(8): 835-838, 2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31281129

ABSTRACT

Glucose transporter 4 (GLUT4) is an insulin-regulated glucose transporter, which is vital for blood glucose homeostasis. To clarify the physiological roles of GLUT4, quantitative measurement of GLUT4 exocytosis is indispensable. Herein, we show a rapid detection system for GLUT4 on the cell surface using spontaneous split-luciferase reconstitution. Upon insulin-induced GLUT4 exocytosis, GLUT4 was exposed outside, where luciferase is reconstituted and emitted luminescence. Pretreatment with inhibitors reduced the insulin-induced signal elevation. The results indicate that the developed method is applicable to high-throughput analysis on GLUT4 trafficking, which will greatly accelerate comprehensive research on the physiological roles of GLUT4.


Subject(s)
Exocytosis , Genetic Complementation Test , Glucose Transporter Type 4/analysis , Luciferases/metabolism , Cell Membrane/metabolism , Glucose Transporter Type 4/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Luciferases/genetics
2.
J Am Chem Soc ; 139(15): 5359-5366, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28320204

ABSTRACT

Photoluminescent coordination nanosheets (CONASHs) comprising three-way terpyridine (tpy) ligands and zinc(II) ions are created by allowing the two constitutive components to react with each other at a liquid/liquid interface. Taking advantage of bottom-up CONASHs, or flexibility in organic ligand design and coordination modes, we demonstrate the diversity of the tpy-zinc(II) CONASH in structures and photofunctions. A combination of 1,3,5-tris[4-(4'-2,2':6',2″-terpyridyl)phenyl]benzene (1) and Zn(BF4)2 affords a cationic CONASH featuring the bis(tpy)Zn complex motif (1-Zn), while substitution of the zinc source with ZnSO4 realizes a charge-neutral CONASH with the [Zn2(µ-O2SO2)2(tpy)2] motif [1-Zn2(SO4)2]. The difference stems from the use of noncoordinating (BF4-) or coordinating and bridging (SO42-) anions. The change in the coordination mode alters the luminescence (480 nm blue in 1-Zn; 552 nm yellow in 1-Zn2(SO4)2). The photophysical property also differs in that 1-Zn2(SO4)2 shows solvatoluminochromism, whereas 1-Zn does not. Photoluminescence is also modulated by the tpy ligand structure. 2-Zn contains triarylamine-centered terpyridine ligand 2 and features the bis(tpy)Zn motif; its emission is substantially red-shifted (590 nm orange) compared with that of 1-Zn. CONASHs 1-Zn and 2-Zn possess cationic nanosheet frameworks with counteranions (BF4-), and thereby feature anion exchange capacities. Indeed, anionic xanthene dyes were taken up by these nanosheets, which undergo quasi-quantitative exciton migration from the host CONASH. This series of studies shows tpy-zinc(II) CONASHs as promising potential photofunctional nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...