Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; : e202301003, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38116894

ABSTRACT

Carbon dioxide capture and reduction (CCR) to CH4 using dual-functional materials (DFMs) have recently attracted significant attention as a promising strategy for carbon capture and utilization. In this study, we investigate the mechanism of CCR to CH4 over Al2 O3 -supported Ni-Ca DFMs (Ni-Ca/Al2 O3 ) under cyclic feeds of model combustion exhaust (2.5 % CO2 +0 or 10 % O2 /N2 ) and H2 at 500 °C. Various spectroscopic analyses, including time-resolved in situ X-ray diffraction and X-ray absorption spectroscopy, were conducted during CO2 capture and the subsequent H2 -reduction steps. Based on these analyses, we propose a mechanism of CCR to CH4 over Ni-Ca based DFMs. During the CO2 capture step, the Ni0 species underwent complete oxidation in the presence of O2 to yield NiO. Subsequently, CO2 was captured through the interaction between the CaO surface and CO2 , resulting in the formation of CaCO3 layers on the CaO particles. When the gas flow was switched to H2 , NiO was partially to provide Ni0 sites, which acted as active sites for H2 -reduction of the adjacent CaCO3 layers to yield CaO and gas-phase products, CH4 and H2 O.

2.
Environ Sci Technol ; 57(43): 16289-16295, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37861445

ABSTRACT

This study reports a comprehensive investigation into the active sites and reaction mechanism for the selective catalytic reduction of NO by NH3 (NH3-SCR) over phosphate-loaded ceria (P/CeO2). Catalyst characterization and density functional theory calculations reveal that H3PO4 and H2P2O6 species are the dominant phosphate species on the P/CeO2 catalysts under the experimental conditions. The reduction/oxidation half-cycles (RHC/OHC) were investigated using in situ X-ray absorption near-edge structure for Ce L3-edge, ultraviolet-visible, and infrared (IR) spectroscopies together with online analysis of outlet products (operando spectroscopy). The Ce4+(OH-) species, possibly adjacent to the phosphate species, are reduced by NO + NH3 to produce N2, H2O, and Ce3+ species (RHC). The Ce3+ species is reoxidized by aqueous O2 (OHC). The results from IR spectroscopy suggest that the RHC initiates with the reaction between NO and Ce4+(OH-) to yield Ce3+ and gaseous HONO, which then react with NH3 to produce N2 and H2O via NH4NO2 intermediates.


Subject(s)
Ammonia , Water , Ammonia/chemistry , Oxidation-Reduction , Water/chemistry , Spectrophotometry, Infrared , Catalysis , Phosphates
3.
RSC Adv ; 13(4): 2213-2219, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36741151

ABSTRACT

Although Ni-Ca-based dual functional materials (DFMs) have been examined for CO2 capture and reduction with H2 (CCR) for the synthesis of CH4, their performance has generally been investigated using single reactors in an oxygen-free environment. In addition, continuous CCR operations have scarcely been investigated. In this study, continuous CCR for the production of CH4 was investigated using a double reactor system over Al2O3-supported Ni-Ca DFMs in the presence of O2. We found that a high Ca loading (Ni(10)-Ca(30)/Al2O3, 10 wt% Ni, and 30 wt% CaO) was necessary for reaction efficiency under isothermal conditions at 450 °C. The optimized DFM exhibited an excellent performance (46% CO2 conversion, 45% CH4 yield, and 97% CH4 selectivity, respectively) and good stability over 24 h. The structure and CCR activity of Ni(10)-Ca(30)/Al2O3 were studied using X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectrometry (EDS), temperature-programmed desorption (TPD), and temperature-programmed surface reaction (TPSR) techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...