Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Risk Anal ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936539

ABSTRACT

Simulated exposure to severe acute respiratory syndrome coronavirus 2 in the environment was demonstrated based on the actual coronavirus disease 2019 cluster occurrence in an office, with a projected risk considering the likely transmission pathways via aerosols and fomites. A total of 35/85 occupants were infected, with the attack rate in the first stage as 0.30. It was inferred that the aerosol transmission at long-range produced the cluster at virus concentration in the saliva of the infected cases on the basis of the simulation, more than 108  PFU mL-1 . Additionally, all wearing masks effectiveness was estimated to be 61%-81% and 88%-95% reduction in risk for long-range aerosol transmission in the normal and fit state of the masks, respectively, and a 99.8% or above decline in risk of fomite transmission. The ventilation effectiveness for long-range aerosol transmission was also calculated to be 12%-29% and 36%-66% reductions with increases from one air change per hour (ACH) to two ACH and six ACH, respectively. Furthermore, the virus concentration reduction in the saliva to 1/3 corresponded to the risk reduction for long-range aerosol transmission by 60%-64% and 40%-51% with and without masks, respectively.

2.
BMC Public Health ; 23(1): 1205, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344806

ABSTRACT

BACKGROUND: In Japan, there are currently no definitive conclusions regarding the characteristics of multiple chemical sensitivity (MCS) and electromagnetic hypersensitivity (EHS). This study aimed to determine the prevalence and correlation of MCS and EHS with age, sex, and depression in the Japanese population. METHODS: An anonymous self-report questionnaire was distributed to 2,007 participants. Variables such as MCS, EHS, depression score, and demographic characteristics were individually evaluated using the U-test, chi-squared test, and correlation analyses. Moreover, we performed a covariance structure analysis to build a structural equation model. RESULTS: Older individuals and women were more likely to exhibit MCS and EHS symptoms. Moreover, depression was correlated with MCS and EHS. CONCLUSIONS: Although MCS and EHS are strongly correlated, they exhibit distinct characteristics and symptoms, indicating that they can be regarded as separate conditions.


Subject(s)
Hypersensitivity , Multiple Chemical Sensitivity , Humans , Female , Multiple Chemical Sensitivity/epidemiology , Retrospective Studies , Prevalence , Depression/epidemiology , East Asian People , Electromagnetic Fields , Hypersensitivity/epidemiology
3.
Article in English | MEDLINE | ID: mdl-36878577

ABSTRACT

During the recent emergence of COVID-19, an increased practice of hand hygiene coincided with the reduced incidence of the norovirus epidemic in Japan, which is similar to experience with the pandemic flu in 2009. We investigated the relationship between the sales of hand hygiene products, including liquid hand soap and alcohol-based hand sanitizer, and the trend of norovirus epidemic. We used national gastroenteritis surveillance data across Japan in 2020 and 2021 and compared the base statistics of incidence of these two years with the average of the previous 10 years (2010-2019). We calculated the correlations (Spearman's Rho) between monthly sales of hand hygiene products and monthly norovirus cases and fitted them to a regression model. In 2020, there was no epidemic, and the incidence peak was the lowest in recent norovirus epidemics. In 2021, the incidence peak was delayed for five weeks to the usual epidemic seasons. Correlation coefficients between monthly sales of liquid hand soap and skin antiseptics and norovirus incidence showed a significantly negative correlation (Spearman's Rho = -0.88 and p = 0.002 for liquid hand soap; Spearman's Rho = -0.81 and p = 0.007 for skin antiseptics). Exponential regression models were fitted between the sales of each hand hygiene product and norovirus cases, respectively. The results suggest hand hygiene using these products is a potentially useful prevention method against norovirus epidemics. Effective ways of hand hygiene for increasing the prevention of norovirus should therefore be studied.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Hand Hygiene , Norovirus , Humans , Japan/epidemiology , Soaps
4.
Environ Int ; 147: 106338, 2021 02.
Article in English | MEDLINE | ID: mdl-33401172

ABSTRACT

We assessed the risk of COVID-19 infection in a healthcare worker (HCW) from multiple pathways of exposure to SARS-CoV-2 in a health-care setting of short distance of 0.6 m between the HCW and a patient while caring, and evaluated the effectiveness of a face mask and a face shield using a model that combined previous infection-risk models. The multiple pathways of exposure included hand contact via contaminated surfaces and an HCW's fingers with droplets, droplet spray, and inhalation of inspirable and respirable particles. We assumed a scenario of medium contact time (MCT) and long contact time (LCT) over 1 day of care by an HCW. SARS-CoV-2 in the particles emitted by coughing, breathing, and vocalization (only in the LCT scenario) by the patient were considered. The contribution of the risk of infection of an HCW by SARS-CoV-2 from each pathway to the sum of the risks from all pathways depended on virus concentration in the saliva of the patient. At a virus concentration in the saliva of 101-105 PFU mL-1 concentration in the MCT scenario and 101-104 PFU mL-1 concentration in the LCT scenario, droplet spraying was the major pathway (60%-86%) of infection, followed by hand contact via contaminated surfaces (9%-32%). At a high virus concentration in the saliva (106-108 PFU mL-1 in the MCT scenario and 105-108 PFU mL-1 in the LCT scenario), hand contact via contaminated surfaces was the main contributor (41%-83%) to infection. The contribution of inhalation of inspirable particles was 4%-10% in all assumed cases. The contribution of inhalation of respirable particles increased as the virus concentration in the saliva increased, and reached 5%-27% at the high saliva concentration (107 and 108 PFU mL-1) in the assumed scenarios using higher dose-response function parameter (0.246) and comparable to other pathways, although these were worst and rare cases. Regarding the effectiveness of nonpharmaceutical interventions, the relative risk (RR) of an overall risk for an HCW with an intervention vs. an HCW without intervention was 0.36-0.37, 0.02-0.03, and <4.0 × 10-4 for a face mask, a face shield, and a face mask plus shield, respectively, in the likely median virus concentration in the saliva (102-104 PFU mL-1), suggesting that personal protective equipment decreased the infection risk by 63%->99.9%. In addition, the RR for a face mask worn by the patient, and a face mask worn by the patient plus increase of air change rate from 2 h-1 to 6 h-1 was <1.0 × 10-4 and <5.0 × 10-5, respectively in the same virus concentration in the saliva. Therefore, by modeling multiple pathways of exposure, the contribution of the infection risk from each pathway and the effectiveness of nonpharmaceutical interventions for COVID-19 were indicated quantitatively, and the importance of the use of a face mask and shield was confirmed.


Subject(s)
COVID-19 , SARS-CoV-2 , Health Personnel , Humans , Personal Protective Equipment , Saliva
5.
PLoS One ; 15(10): e0239458, 2020.
Article in English | MEDLINE | ID: mdl-33002057

ABSTRACT

Styrene in indoor air can adversely affect human health. In this study, styrene monomer and other chemical emission fluxes for products containing expanded polystyrene beads (pillows, cushions, and soft toys) were measured at various temperatures to simulate typical product use. The contributions of the products to styrene and other chemical concentrations in indoor air and human exposure to these chemicals were estimated, and health risk assessments were performed. The styrene monomer emission fluxes for the samples at 25°C were between 25.3 and 8.73×103 µg/(m2 h). The styrene emission fluxes for the product surfaces increased strongly as the temperature increased, from between 124 and 2.44×104 µg/(m2 h) at 36°C (simulating human body temperature) to between 474 and 4.59×104 µg/(m2 h) at 50°C (simulating inside an automobile in summer). The hexane, heptane, toluene, octane, ethylbenzene, m- and p-xylene, o-xylene, and dodecane emission fluxes at 25°C for the sample that emitted the analytes most readily were high. The maximum estimated styrene and xylene concentrations in indoor air caused by emissions from expanded polystyrene beads at 36°C in a bedroom and automobile were higher than the relevant guidelines. The maximum contribution of a product containing expanded polystyrene beads in a living room, bedroom, or automobile could cause the total volatile organic compound concentration in air to exceed the advisable value (400 µg/m3). The estimated maximum hazard quotients for styrene, toluene, and xylene emitted by a product containing expanded polystyrene beads at 36°C in a bedroom were 0.59, 0.30, and 0.37, respectively. These non-carcinogenic risk values for single products could contribute to the non-carcinogenic risk thresholds being exceeded when multiple products and other sources of chemicals are taken into consideration. The estimated styrene concentrations suggest that products containing expanded polystyrene beads are important sources of styrene to indoor air.


Subject(s)
Air Pollutants/analysis , Microspheres , Polystyrenes/chemistry , Styrene/analysis , Air Pollutants/chemistry , Environmental Monitoring , Styrene/chemistry , Temperature
6.
PLoS One ; 14(9): e0222557, 2019.
Article in English | MEDLINE | ID: mdl-31539387

ABSTRACT

Emission rates of diethylhexyl phthalate (DEHP) from building materials, such as vinyl floorings and wall paper, determined using a passive flux sampler (PFS) were constant over the week-long measurement period. Emission rates for vinyl floorings and wallpaper were linearly correlated to the inverse of diffusion distance, which corresponds to the internal depth of the PFS. Surface-air DEHP concentrations (y0) were estimated as 1.3-2.3 µg/m3 for materials having a boundary layer molecular diffusion rate-limiting step. The partition coefficient (Kmaterial-air) was estimated as 3.3-7.5 × 1010 for these materials. Additionally, emission rates of DEHP from same building materials determined using a micro-chamber were 4.5-6.1 µg/m2/h. Mass transfer coefficients in the micro-chamber (hm) were estimated by comparing the results using the PFS and micro-chamber, and these were 1.1-1.2 × 10-3 and 8.1 × 10-4 m/s for vinyl floorings (smooth surface) and wallpaper (rough surface), respectively. The thickness of boundary layer on the surface of building materials in the micro-chamber were estimated to be 2.5-2.6 and 3.7 mm for vinyl floorings and wallpaper, respectively.


Subject(s)
Construction Materials/analysis , Diethylhexyl Phthalate/analysis , Environmental Exposure/analysis , Floors and Floorcoverings
7.
PLoS One ; 14(4): e0215144, 2019.
Article in English | MEDLINE | ID: mdl-31026284

ABSTRACT

BACKGROUND & OBJECTIVES: The Quick Environmental Exposure and Sensitivity Inventory (QEESI) developed by Miller and Prihoda in the USA is used as a questionnaire for patients with multiple chemical sensitivity (MCS) in >10 countries. We developed a Japanese version of QEESI, assessed its reliability and validity, and defined original cut-off values for screening Japanese patients with MCS in 2003. Our recent study revealed that opportunities for exposure to various chemicals had increased for people in Japan, while subjective symptoms of MCS in patients had increased in severity. In this study, we considered new cut-off values that combined QEESI subscale scores based on the current situation in Japan. METHODS: The questionnaire used was a Japanese version of QEESI. The survey was conducted from 2012 to 2015. Participants were 111 patients with MCS (mean age: 46 ± 20, 81% female) initially diagnosed by physicians, and 444 age- and gender-matched controls not diagnosed with MCS by doctors. The discriminatory validity of QEESI scores of patients and controls were evaluated by logistic regression and receiver operating characteristic analyses when considering interactions of the Masking Index (ongoing chemical exposure). New combined cut-off values were then set. RESULTS: New combined cut-off values (meeting conditions of Chemical Intolerances ≥ 30, Symptom Severity ≥ 13, and Life Impacts ≥ 17) showed high sensitivity (82.0%) and specificity (94.4%). Using new criteria when considering ongoing chemical exposure, study participants were categorized as: Very suggestive, Somewhat suggestive, Problematic, and Not suggestive. Participants classified as Very suggestive included 25 (5.6%) controls. CONCLUSIONS: We have set new criteria with combined cut-off values based on current Japanese conditions. Such new criteria can be used for screening and as a diagnostic aid for Japanese patients with MCS and suggest approximately 6% of the Japanese general population may be classified as "Very suggestive people with MCS".


Subject(s)
Environmental Exposure/adverse effects , Health Surveys/statistics & numerical data , Health Surveys/standards , Multiple Chemical Sensitivity/epidemiology , Adolescent , Adult , Aged , Case-Control Studies , Child , Female , Humans , Incidence , Japan/epidemiology , Male , Middle Aged , Multiple Chemical Sensitivity/etiology , Surveys and Questionnaires , Young Adult
8.
Int J Hyg Environ Health ; 221(8): 1085-1096, 2018 09.
Article in English | MEDLINE | ID: mdl-30115513

ABSTRACT

BACKGROUND: Recently, with rapid changes in the Japanese lifestyle, the clinical condition of patients with multiple chemical sensitivity (MCS) may also have undergone change. Thus, we conducted a new survey for subjective symptoms, ongoing chemical exposures, the prevalence of allergic diseases, and presumed onset/trigger factors in patients with MCS and compared results with those of an old survey from ten years ago. METHODS: The new survey was conducted from 2012 to 2015 and the old survey was independently conducted from 1999 to 2003, meaning it was not a follow-up study. Patients were initially diagnosed by physicians at five medical institutions with MCS specialty outpatient services, with 111 and 103 patients participating in the new and old surveys, respectively. The controls were a general population living in Japan, with 1313 and 2382 participants in the new and old surveys, respectively. Subjective symptoms and ongoing chemical exposure were evaluated using a quick environmental exposure sensitivity inventory. Additionally, from clinical findings recorded by an attending physician, the prevalence of allergic diseases and presumed onset/trigger factors were evaluated. Differences between new and old surveys were analyzed using logistic regression analyses and significance tests. RESULTS: Compared with ten years ago: (1) Regarding factors affecting patients with ongoing chemical exposures, the proportion of patients affected decreased significantly for two items only (insecticides and second-hand smoke). The proportion of controls showing ongoing exposure to 8 out of 10 items changed significantly. (2) In patients, scores for chemical intolerances, other intolerances, and life impacts increased significantly. (3) In terms of the prevalence of allergic diseases among patients with MCS, bronchial asthma (adjusted odds ratio [AOR]: 5.19), atopic dermatitis (AOR: 3.77), allergic rhinitis (AOR: 5.34), and food allergies (AOR: 2.63) increased significantly, while hay fever (AOR: 0.38) and drug allergies (AOR: 0.40) decreased significantly. (4) With regard to construction and renovation, which was the presumed predominant onset/trigger factor for MCS 10 years ago, this decreased from 68.9% to 35.1%; in contrast, electromagnetic fields (0.0%-26.1%), perfume (0.0%-20.7%), and medical treatment (1.9%-7.2%) increased significantly, confirming the diversification of onset/trigger factors. CONCLUSION: Compared to ten years ago, for patients with MCS, an increase in avoidance behavior toward chemical substance exposures, which were presumed to be aggravating factors for symptoms, was confirmed. It has been suggested that the ongoing chemical exposure of the general population in Japan has largely changed. In addition, for patients with MCS, chemical intolerances and life impacts have become severe, the prevalence of the main allergic diseases has increased, and onset/trigger factors have become diversified.


Subject(s)
Environmental Exposure/adverse effects , Hypersensitivity/epidemiology , Multiple Chemical Sensitivity/epidemiology , Adolescent , Adult , Aged , Child , Female , Humans , Japan/epidemiology , Male , Middle Aged , Odds Ratio , Prevalence , Surveys and Questionnaires , Symptom Assessment , Young Adult
9.
Article in English | MEDLINE | ID: mdl-27455290

ABSTRACT

We measured temporal changes in concentrations of total volatile organic compounds (TVOCs) and individual volatile organic compounds in a newly built daycare center. The temporal changes of the TVOC concentrations were monitored with a photo ionization detector (PID), and indoor air was sampled and analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) and high performance liquid chromatography (HPLC) to determine the concentrations of the constituent VOCs. The measurements were performed just after completion of the building and again 3 months after completion. The TVOC concentration exceeded 1000 µg·m(-3) for all the sampling locations just after completion of building, and decreased almost one tenth after 3 months, to below the guideline values of the TVOC in Japan at 400 µg·m(-3). The concentrations of the target VOCs of which the indoor concentrations are regulated in Japan were below the guideline values for all the cases. The air-exchange rates were determined based on the temporal changes of the TVOC concentrations, and it was found that the countermeasure to increase the air exchange rate successfully decrease the TVOC concentration level in the rooms.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Child Day Care Centers , Volatile Organic Compounds/analysis , Child , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Humans , Japan
10.
Int J Environ Res Public Health ; 12(10): 12446-65, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26445055

ABSTRACT

In-situ real-time monitoring of volatile organic compound (VOC) exposure and heart rate variability (HRV) were conducted for eight multiple chemical sensitivity (MCS) patients using a VOC monitor, a Holter monitor, and a time-activity questionnaire for 24 h to identify the relationship between VOC exposure, biological effects, and subjective symptoms in actual life. The results revealed no significantly different parameters for averaged values such as VOC concentration, HF (high frequency), and LF (low frequency) to HF ratio compared with previous data from healthy subjects (Int. J. Environ. Res. Public Health 2010, 7, 4127-4138). Significant negative correlations for four subjects were observed between HF and amounts of VOC change. These results suggest that some patients show inhibition of parasympathetic activities along with VOC exposure as observed in healthy subjects. Comparing the parameters during subjective symptoms and normal condition, VOC concentration and/or VOC change were high except for one subject. HF values were low for five subjects during subjective symptoms. Examining the time-series data for VOC exposure and HF of each subject showed that the subjective symptoms, VOC exposure, and HF seemed well related in some symptoms. Based on these characteristics, prevention measures of symptoms for each subject may be proposed.


Subject(s)
Air Pollutants/analysis , Heart Rate , Inhalation Exposure/analysis , Multiple Chemical Sensitivity/physiopathology , Volatile Organic Compounds/analysis , Adult , Electrocardiography, Ambulatory , Environmental Monitoring , Female , Humans , Male , Middle Aged
11.
Biotechnol Lett ; 37(9): 1845-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26016679

ABSTRACT

OBJECTIVES: Microbial volatile organic compounds (MVOCs) produced by the brown-rot fungus Fomitopsis palustris and white-rot fungus Trametes versicolor grown on wood chip and potato dextrose agar were analyzed by GC-MS. RESULTS: In total, 110 organic compounds were identified as MVOCs. Among them, only 23 were MVOCs commonly observed in both types of fungi, indicating that the fungi have differential MVOC expression profiles. In addition, F. palustris and T. versicolor produced 38 and 22 MVOCs, respectively, which were detected only after cultivation on wood chip. This suggests that the fungi specifically released these MVOCs when degrading the cell-wall structure of the wood. Time course analysis of MVOC emission showed that both types of fungi produced the majority of MVOCs during the active phase of wood degradation. CONCLUSION: As both fungi produced specific MVOCs in the course of wood degradation indicates the possibility of the application of MVOCs as detection markers for wood-decay fungus existing in woody materials.


Subject(s)
Agaricales/chemistry , Volatile Organic Compounds/analysis , Agaricales/classification , Gas Chromatography-Mass Spectrometry , Wood/microbiology
12.
Int J Environ Res Public Health ; 12(3): 2950-66, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25764058

ABSTRACT

Continuous ambient air monitoring systems have been introduced worldwide. However, such monitoring forces autonomous communities to bear a significant financial burden. Thus, it is important to identify pollutant-monitoring stations that are less efficient, while minimizing loss of data quality and mitigating effects on the determination of spatiotemporal trends of pollutants. This study describes a procedure for optimizing a constant ambient air monitoring system in the Kanto region of Japan. Constant ambient air monitoring stations in the area were topologically classified into four groups by cluster analysis and principle component analysis. Then, air pollution characteristics in each area were reviewed using concentration contour maps and average pollution concentrations. We then introduced three simple criteria to reduce the number of monitoring stations: (1) retain the monitoring station if there were similarities between its data and average data of the group to which it belongs; (2) retain the station if its data showed higher concentrations; and (3) retain the station if the monitored concentration levels had an increasing trend. With this procedure, the total number of air monitoring stations in suburban and urban areas was reduced by 36.5%. The introduction of three new types of monitoring stations is proposed, namely, mobile, for local non-methane hydrocarbon pollution, and Ox-prioritized.


Subject(s)
Air Pollution, Indoor/analysis , Air Pollution/analysis , Air Pollutants/analysis , Cluster Analysis , Hazardous Substances/analysis , Humans , Hydrocarbons/analysis , Japan , Principal Component Analysis
13.
Int J Environ Res Public Health ; 11(7): 6844-55, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24995597

ABSTRACT

This study demonstrates an application of cluster analysis to constant ambient air monitoring data of four pollutants in the Kanto region: NOx, photochemical oxidant (Ox), suspended particulate matter, and non-methane hydrocarbons. Constant ambient air monitoring can provide important information about the surrounding atmospheric pollution. However, at the same time, ambient air monitoring can place a significant financial burden on some autonomous communities. Thus, it has been necessary to reduce both the number of monitoring stations and the number of chemicals monitored. To achieve this, it is necessary to identify those monitoring stations and pollutants that are least significant, while minimizing the loss of data quality and mitigating the effects on the determination of any spatial and temporal trends of the pollutants. Through employing cluster analysis, it was established that the ambient monitoring stations in the Kanto region could be clustered topologically for NOx and Ox into eight groups. From the results of this analysis, it was possible to identify the similarities in site characteristics and pollutant behaviors.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/statistics & numerical data , Cluster Analysis , Environmental Monitoring/methods , Hydrocarbons/analysis , Japan , Nitrogen Oxides/analysis , Ozone/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis
14.
Chemosphere ; 89(10): 1238-42, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22871338

ABSTRACT

The photo-Fenton reaction was applied as a novel method for the removal of volatile organic compounds (VOCs) in the gas phase, and its effectiveness was experimentally examined. In conventional VOCs removal methods using a photocatalyst or ozone, VOCs are oxidized in the gas phase. Therefore, incompletely oxidized intermediates, which may have adverse effects on health, are likely to contaminate the treated air. On the other hand, in the VOCs removal method developed in this study, because the VOCs are oxidized in the liquid phase by the photo-Fenton reaction, any incompletely oxidized intermediates produced are confined to the liquid phase. As a result, the contamination of the treated air by these harmful intermediates can be prevented. Using a semi-batch process, it was found that the removal efficiency for toluene in a one-pass test (residence time of 17s) was 61%, for an inlet toluene gas concentration of 930 ppbv, an initial iron ion concentration of 20 mg L(-1), and an initial hydrogen peroxide concentration of 630 mg L(-1). The removal efficiency was almost constant as long as H(2)O(2) was present in the solution. Proton transfer reaction mass spectrometry analysis confirmed the absence of any incompletely oxidized intermediates in the treated air.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Toluene/analysis , Volatile Organic Compounds/analysis , Air Pollutants/chemistry , Environmental Restoration and Remediation/methods , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction , Toluene/chemistry , Volatile Organic Compounds/chemistry
15.
Parasitology ; 139(12): 1614-29, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22835817

ABSTRACT

Lice are obligate parasites of mammals and birds and have become an important model for studies of host-parasite co-evolution and co-phylogenetics. Population genetic and phylogeographic studies represent an important bridge between microevolution and co-phylogenetic patterns. We examine co-phylogeographic patterns in sika deer and their parasitic lice. Co-phylogeographic patterns in deer and lice were evaluated using homologous regions of mitochondrial COI sequences. The phylogeographic breaks recovered for deer populations matched those of previous studies. Comparisons of the phylogeographic tree topology for deer lice with that of their hosts revealed a significant level of congruence. However, comparisons of genetic distances between deer and lice suggested that one of the estimated co-divergence events is more likely a recent host switch. Taking into account genetic divergence, there is not strong evidence for complete phylogeographic co-divergence between deer and their parasitic lice. However, mitochondrial phylogenies only track genetic structure of female lineages, and the incongruence between deer and louse phylogeography may be explained by louse migration mediated by male deer. Morphological analysis of head shape variation based on an elliptic Fourier descriptor showed that overall morphological variation contained phylogenetic signal, suggesting that in general morphology of these lice evolves congruent to population history.


Subject(s)
Biological Evolution , Deer/classification , Deer/parasitology , Ischnocera/anatomy & histology , Ischnocera/cytology , Lice Infestations/veterinary , Animals , Deer/genetics , Electron Transport Complex IV/genetics , Female , Ischnocera/classification , Ischnocera/genetics , Lice Infestations/parasitology , Male , Phylogeny , Phylogeography , Principal Component Analysis
16.
BMC Genomics ; 12: 394, 2011 Aug 04.
Article in English | MEDLINE | ID: mdl-21813020

ABSTRACT

BACKGROUND: The gene composition, gene order and structure of the mitochondrial genome are remarkably stable across bilaterian animals. Lice (Insecta: Phthiraptera) are a major exception to this genomic stability in that the canonical single chromosome with 37 genes found in almost all other bilaterians has been lost in multiple lineages in favour of multiple, minicircular chromosomes with less than 37 genes on each chromosome. RESULTS: Minicircular mt genomes are found in six of the ten louse species examined to date and three types of minicircles were identified: heteroplasmic minicircles which coexist with full sized mt genomes (type 1); multigene chromosomes with short, simple control regions, we infer that the genome consists of several such chromosomes (type 2); and multiple, single to three gene chromosomes with large, complex control regions (type 3). Mapping minicircle types onto a phylogenetic tree of lice fails to show a pattern of their occurrence consistent with an evolutionary series of minicircle types. Analysis of the nuclear-encoded, mitochondrially-targetted genes inferred from the body louse, Pediculus, suggests that the loss of mitochondrial single-stranded binding protein (mtSSB) may be responsible for the presence of minicircles in at least species with the most derived type 3 minicircles (Pediculus, Damalinia). CONCLUSIONS: Minicircular mt genomes are common in lice and appear to have arisen multiple times within the group. Life history adaptive explanations which attribute minicircular mt genomes in lice to the adoption of blood-feeding in the Anoplura are not supported by this expanded data set as minicircles are found in multiple non-blood feeding louse groups but are not found in the blood-feeding genus Heterodoxus. In contrast, a mechanist explanation based on the loss of mtSSB suggests that minicircles may be selectively favoured due to the incapacity of the mt replisome to synthesize long replicative products without mtSSB and thus the loss of this gene lead to the formation of minicircles in lice.


Subject(s)
Genome, Mitochondrial/genetics , Phthiraptera/genetics , Sequence Deletion/genetics , Animals , Base Sequence , Cell Nucleus/genetics , Data Mining , Databases, Genetic , Evolution, Molecular , Genomics , Molecular Sequence Annotation , Molecular Sequence Data , Phthiraptera/cytology
17.
Int J Environ Res Public Health ; 7(11): 3853-70, 2010 11.
Article in English | MEDLINE | ID: mdl-21139865

ABSTRACT

Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS) can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs) are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs) concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene.


Subject(s)
Ketones/chemistry , Mass Spectrometry/methods , Ozone/chemistry , Terpenes/chemistry , Kinetics , Oxidation-Reduction , Volatile Organic Compounds/chemistry
18.
Int J Environ Res Public Health ; 7(9): 3489-98, 2010 09.
Article in English | MEDLINE | ID: mdl-20948938

ABSTRACT

The irreversible removal of acetaldehyde from indoor air via a chemical reaction with amino acids was investigated. To compare effectiveness, five types of amino acid (glycine, l-lysine, l-methionine, l-cysteine, and l-cystine) were used as the reactants. First, acetaldehyde-laden air was introduced into aqueous solutions of each amino acid and the removal abilities were compared. Among the five amino acids, l-cysteine solution showed much higher removal efficiency, while the other amino acids solutions didn't show any significant differences from the removal efficiency of water used as a control. Next, as a test of the removal abilities of acetaldehyde by semi-solid l-cysteine, a gel containing l-cysteine solution was put in a fluororesin bag filled with acetaldehyde gas, and the change of acetaldehyde concentration was measured. The l-cysteine-containing gel removed 80% of the acetaldehyde in the air within 24 hours. The removal ability likely depended on the unique reaction whereby acetaldehyde and l-cysteine rapidly produce 2-methylthiazolidine-4-carboxylic acid. These results suggested that the reaction between acetaldehyde and l-cysteine has possibilities for irreversibly removing toxic acetaldehyde from indoor air.


Subject(s)
Acetaldehyde/isolation & purification , Air Pollution, Indoor/prevention & control , Cysteine/chemistry , Absorption , Acetaldehyde/chemistry
19.
Int J Environ Res Public Health ; 7(12): 4100-10, 2010 12.
Article in English | MEDLINE | ID: mdl-21317996

ABSTRACT

A combined integration analysis and real time monitoring (Peak Capture System) system was developed for volatile organic compounds (VOCs). Individual integration analysis and real time monitoring can be used to qualitatively and quantitatively analyze VOCs in the atmosphere and in indoor environments and determine the variation in total VOC (TVOC) concentration with time, respectively. In the Peak Capture System, real time monitoring was used to predict future elevations in the TVOC concentration (peak), and this was used an indicator of when to collect (capture) ambient air samples for integration analysis. This enabled qualitative and quantitative analysis of VOCs when the TVOC concentration was high. We developed an algorithm to predict variation in the TVOC concentration, and constructed an automatic system to initiate air sampling for integration analysis. With the system, auto-sampling and analysis of VOCs in a conventional house were conducted. In comparison with background concentrations, the results of peak analysis enabled identification of compounds whose concentration rose. This also enabled an evaluation of possible VOC emission sources.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Volatile Organic Compounds/analysis , Algorithms , Environmental Monitoring/instrumentation , Housing , Systems Integration
20.
Int J Environ Res Public Health ; 7(12): 4127-38, 2010 12.
Article in English | MEDLINE | ID: mdl-21317998

ABSTRACT

While various volatile organic compounds (VOCs) are known to show neurotoxic effects, the detailed mechanisms of the action of VOCs on the autonomic nervous system are not fully understood, partially because objective and quantitative measures to indicate neural abnormalities are still under development. Nevertheless, heart rate variability (HRV) has been recently proposed as an indicative measure of the autonomic effects. In this study, we used HRV as an indicative measure of the autonomic effects to relate their values to the personal concentrations of VOCs measured by a real-time VOC monitor. The measurements were conducted for 24 hours on seven healthy subjects under usual daily life conditions. The results showed HF powers were significantly decreased for six subjects when the changes of total volatile organic compound (TVOC) concentrations were large, indicating a suppression of parasympathetic nervous activity induced by the exposure to VOCs. The present study indicated these real-time monitoring was useful to characterize the trends of VOC exposures and their effects on autonomic nervous system.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Parasympathetic Nervous System/drug effects , Volatile Organic Compounds/toxicity , Adult , Electrocardiography, Ambulatory/methods , Environmental Monitoring/instrumentation , Female , Heart Rate/drug effects , Humans , Japan , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...