Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Res Sq ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38405800

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma (PRAD) and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.

2.
Cancer Discov ; 14(5): 752-765, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38227896

ABSTRACT

A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE: STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.


Subject(s)
Exodeoxyribonucleases , Membrane Proteins , Phosphoproteins , Signal Transduction , Exodeoxyribonucleases/genetics , Mice , Phosphoproteins/metabolism , Phosphoproteins/genetics , Humans , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/drug therapy , Interferons/metabolism , Cell Line, Tumor , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism
3.
Cancer Discov ; 14(3): 424-445, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38197680

ABSTRACT

Castration-resistant prostate cancer (CRPC) is a heterogeneous disease associated with phenotypic subtypes that drive therapy response and outcome differences. Histologic transformation to castration-resistant neuroendocrine prostate cancer (CRPC-NE) is associated with distinct epigenetic alterations, including changes in DNA methylation. The current diagnosis of CRPC-NE is challenging and relies on metastatic biopsy. We developed a targeted DNA methylation assay to detect CRPC-NE using plasma cell-free DNA (cfDNA). The assay quantifies tumor content and provides a phenotype evidence score that captures diverse CRPC phenotypes, leveraging regions to inform transcriptional state. We tested the design in independent clinical cohorts (n = 222 plasma samples) and qualified it achieving an AUC > 0.93 for detecting pathology-confirmed CRPC-NE (n = 136). Methylation-defined cfDNA tumor content was associated with clinical outcomes in two prospective phase II clinical trials geared towards aggressive variant CRPC and CRPC-NE. These data support the application of targeted DNA methylation for CRPC-NE detection and patient stratification. SIGNIFICANCE: Neuroendocrine prostate cancer is an aggressive subtype of treatment-resistant prostate cancer. Early detection is important, but the diagnosis currently relies on metastatic biopsy. We describe the development and validation of a plasma cell-free DNA targeted methylation panel that can quantify tumor fraction and identify patients with neuroendocrine prostate cancer noninvasively. This article is featured in Selected Articles from This Issue, p. 384.


Subject(s)
Cell-Free Nucleic Acids , Prostatic Neoplasms, Castration-Resistant , Male , Humans , DNA Methylation , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/genetics , Biopsy , Cell-Free Nucleic Acids/genetics
4.
Heliyon ; 10(2): e24430, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38268830

ABSTRACT

Dark chocolate, rich in polyphenols, increases cerebral blood flow and improves cognitive function. This study aimed to determine whether the consumption of chocolate with a high concentration of polyphenols helps to maintain cognitive performance during cognitively demanding tasks. In this randomized, single-blinded, crossover, dose-comparison study, 18 middle-aged adults consumed two types of chocolate (25 g each), one with a high concentration (635.0 mg) and the other with a low concentration (211.7 mg) of cacao polyphenols, and performed a cognitive task requiring response inhibition and selective attention over two time periods (15-30 min and 40-55 min after consumption, respectively). Autonomic nerve function and subjective feelings, such as fatigue and concentration, were measured before food intake and after the second task to assess the participant's state. The results showed that the average reaction time between the first and second sessions was not significantly different for either high- or low-concentration chocolate consumption. However, the percentage of correct responses was similar in the first (96.7 %) and second (96.8 %) sessions for high-concentration chocolate consumption and significantly lower for low-concentration chocolate consumption in the second (96.4 %) session than in the first session (97.3 %). Autonomic nerve function showed a significant increase in sympathetic nerve activity after the second task with high-concentration chocolate consumption, while subjective feelings showed an increase in mental fatigue for both chocolate types but a significant decrease in concentration only after the second task with low-concentration chocolate consumption. These findings suggest that dark chocolate consumption contributes to the maintenance of performance and concentration in continuous and demanding cognitive tasks.

5.
J Natl Cancer Inst ; 116(1): 115-126, 2024 01 10.
Article in English | MEDLINE | ID: mdl-37676819

ABSTRACT

BACKGROUND: The phase 3 CALGB 90203 (Alliance) trial evaluated neoadjuvant chemohormonal therapy for high-risk localized prostate cancer before radical prostatectomy. We dissected the molecular features of post-treated tumors with long-term clinical outcomes to explore mechanisms of response and resistance to chemohormonal therapy. METHODS: We evaluated 471 radical prostatectomy tumors, including 294 samples from 166 patients treated with 6 cycles of docetaxel plus androgen deprivation therapy before radical prostatectomy and 177 samples from 97 patients in the control arm (radical prostatectomy alone). Targeted DNA sequencing and RNA expression of tumor foci and adjacent noncancer regions were analyzed in conjunction with pathologic changes and clinical outcomes. RESULTS: Tumor fraction estimated from DNA sequencing was significantly lower in post-treated tumor tissues after chemohormonal therapy compared with controls. Higher tumor fraction after chemohormonal therapy was associated with aggressive pathologic features and poor outcomes, including prostate-specific antigen-progression-free survival. SPOP alterations were infrequently detected after chemohormonal therapy, while TP53 alterations were enriched and associated with shorter overall survival. Residual tumor fraction after chemohormonal therapy was linked to higher expression of androgen receptor-regulated genes, cell cycle genes, and neuroendocrine genes, suggesting persistent populations of active prostate cancer cells. Supervised clustering of post-treated high-tumor-fraction tissues identified a group of patients with elevated cell cycle-related gene expression and poor clinical outcomes. CONCLUSIONS: Distinct recurrent prostate cancer genomic and transcriptomic features are observed after exposure to docetaxel and androgen deprivation therapy. Tumor fraction assessed by DNA sequencing quantifies pathologic response and could be a useful trial endpoint or prognostic biomarker. TP53 alterations and high cell cycle transcriptomic activity are linked to aggressive residual disease, despite potent chemohormonal therapy.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/surgery , Neoadjuvant Therapy , Docetaxel , Androgen Antagonists/therapeutic use , Androgens/therapeutic use , Treatment Outcome , Neoplasm Recurrence, Local/surgery , Prostate-Specific Antigen , Prostatectomy , Nuclear Proteins , Repressor Proteins
6.
Cancer Sci ; 115(1): 283-297, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37923364

ABSTRACT

Androgen-deprivation therapy is a standard treatment for advanced prostate cancer. However, most patients eventually acquire resistance and progress to castration-resistant prostate cancer (CRPC). In this study, we established new CRPC cell lines, AILNCaP14 and AILNCaP15, from LNCaP cells under androgen-deprived conditions. Unlike most pre-existing CRPC cell lines, both cell lines expressed higher levels of androgen receptor (AR) and prostate-specific antigen (PSA) than parental LNCaP cells. Moreover, these cells exhibited primary resistance to enzalutamide. Since AR signaling plays a significant role in the development of CRPC, PSA promoter sequences fused with GFP were introduced into AILNCaP14 cells to conduct GFP fluorescence-based chemical screening. We identified flavopiridol, a broad-spectrum CDK inhibitor, as a candidate drug that could repress AR transactivation of CRPC cells, presumably through the inhibition of phosphorylation of AR on the serine 81 residue (pARSer81 ). Importantly, this broad-spectrum CDK inhibitor inhibited the proliferation of AILNCaP14 cells both in vitro and in vivo. Moreover, a newly developed liver metastatic model using AILNCaP15 cells revealed that the compound attenuated tumor growth of CRPC harboring highly metastatic properties. Finally, we developed a patient-derived xenograft (PDX) model of CRPC and DCaP CR from a patient presenting therapeutic resistance to enzalutamide, abiraterone, and docetaxel. Flavopiridol successfully suppressed the tumor growth of CRPC in this PDX model. Since ARSer81 was found to be phosphorylated in clinical CRPC samples, our data suggested that broad-spectrum CDK inhibitors might be a potent candidate drug for the treatment of CRPC, including those exhibiting primary resistance to enzalutamide.


Subject(s)
Benzamides , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostate-Specific Antigen , Androgen Antagonists/therapeutic use , Androgens , Drug Resistance, Neoplasm , Receptors, Androgen/metabolism , Nitriles/therapeutic use , Cell Line, Tumor
7.
Sci Transl Med ; 15(722): eadf6732, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37967200

ABSTRACT

Aberrant DNA methylation has been implicated as a key driver of prostate cancer lineage plasticity and histologic transformation to neuroendocrine prostate cancer (NEPC). DNA methyltransferases (DNMTs) are highly expressed, and global DNA methylation is dysregulated in NEPC. We identified that deletion of DNMT genes decreases expression of neuroendocrine lineage markers and substantially reduced NEPC tumor development and metastasis in vivo. Decitabine, a pan-DNMT inhibitor, attenuated tumor growth in NEPC patient-derived xenograft models, as well as retinoblastoma gene (RB1)-deficient castration-resistant prostate adenocarcinoma (CRPC) models compared with RB1-proficient CRPC. We further found that DNMT inhibition increased expression of B7 homolog 3 (B7-H3), an emerging druggable target, via demethylation of B7-H3. We tested DS-7300a (i-DXd), an antibody-drug conjugate targeting B7-H3, alone and in combination with decitabine in models of advanced prostate cancer. There was potent single-agent antitumor activity of DS-7300a in both CRPC and NEPC bearing high expression of B7-H3. In B7-H3-low models, combination therapy of decitabine plus DS-7300a resulted in enhanced response. DNMT inhibition may therefore be a promising therapeutic target for NEPC and RB1-deficient CRPC and may sensitize B7-H3-low prostate cancer to DS-7300a through increasing target expression. NEPC and RB1-deficient CRPC represent prostate cancer subgroups with poor prognosis, and the development of biomarker-driven therapeutic strategies for these populations may ultimately help improve patient outcomes.


Subject(s)
Antineoplastic Agents , Neuroendocrine Tumors , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , DNA Methylation/genetics , Decitabine/pharmacology , Decitabine/therapeutic use , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Neuroendocrine Tumors/drug therapy , Transcription Factors/metabolism , Antineoplastic Agents/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism
9.
J Nutr Sci Vitaminol (Tokyo) ; 69(3): 176-183, 2023.
Article in English | MEDLINE | ID: mdl-37394422

ABSTRACT

Recent studies have described that vitamin D deficiency/insufficiency is associated with hypertension, insulin resistance, and dyslipidemia, which are major components of metabolic syndrome causing atherosclerosis. Therefore, we investigated the relationship between serum 25-hydroxyvitamin D [25(OH)D] concentration and atherosclerotic disease risk factors in healthy Japanese adults. In the present cross-sectional study, 1,177 subjects (348 males and 829 females) aged 20-72 y living in Japan (34.7-35.0ºN) were evaluated for vitamin D status by measuring serum 25(OH)D concentration. Atherosclerotic disease risk factors were defined as the presence of two or more of the following three risk factors: high blood pressure, dyslipidemia, and hyperglycemia. The percentages of vitamin D deficient and insufficient subjects were 33% and 46% in males and 59% and 32% in females, respectively. Subjects with atherosclerotic disease risk factors were significantly older and had higher BMI than those without it in both sexes. Male subjects with atherosclerotic disease risk factors had significantly lower physical activity and serum 25(OH)D concentration than those without it. In a logistic regression analysis adjusted for confounding factors, serum 25(OH)D concentration showed a significant inverse association with risk factors of atherosclerotic disease in males (OR=0.951, 95%CI: 0.906-0.998), but not in females. A covariance structure analysis also suggested that serum 25(OH)D level has a direct association with risk factors of atherosclerotic disease. In conclusion, we have demonstrated that low serum 25(OH)D level is a significant factor for increased atherosclerotic disease risk factors in males.


Subject(s)
Atherosclerosis , East Asian People , Vitamin D Deficiency , Adult , Female , Humans , Male , Calcifediol/blood , Cross-Sectional Studies , Risk Factors , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/complications , Atherosclerosis/blood , Atherosclerosis/etiology , Healthy Volunteers , Young Adult , Middle Aged , Aged
10.
Nat Cancer ; 4(5): 699-715, 2023 05.
Article in English | MEDLINE | ID: mdl-37038004

ABSTRACT

Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostate/metabolism , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Positron-Emission Tomography/methods , Tumor Microenvironment
11.
Cancer Med ; 12(3): 3328-3342, 2023 02.
Article in English | MEDLINE | ID: mdl-36812122

ABSTRACT

Using new castration-resistant prostate cancer (CRPC) cell lines developed from LNCaP cells as a model for CRPC, we searched for novel biomarkers by analyzing the proteins secreted in culture supernatants. The results showed that the levels of secretory leukocyte protease inhibitor (SLPI) in these cell lines were 4.7-6.7 times higher than those secreted in parental LNCaP. Patients with localized prostate cancer (PC) and who expressed SLPI had a significantly lower prostate-specific antigen (PSA) progression-free survival rate than those who did not. Multivariate analysis revealed that SLPI expression was an independent risk factor for PSA recurrence. By contrast, when immunostaining of SLPI was performed on consecutive prostate tissue samples obtained from 11 patients, both in hormone naive (HN) and castration resistant (CR) conditions, only one patient expressed SLPI in the HNPC state; however, four of the 11 patients expressed SLPI in the CRPC state. In addition, two of these four patients were resistant to enzalutamide, and there was a discrepancy between their serum PSA levels and radiographic progression of the disease. These results suggest that SLPI can be a predictor of prognosis in patients with localized PC and disease progression in CRPC patients.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostate , Secretory Leukocyte Peptidase Inhibitor , Up-Regulation , Neoplasm Recurrence, Local
12.
Nutrients ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201871

ABSTRACT

Cacao polyphenol-enriched dark chocolate may have beneficial effects on human health, such as facilitating maintaining good performance in long-lasting cognitive tasks. This study examined the effects of dark chocolate intake on improving brain function during cognitive tasks using functional magnetic resonance imaging (fMRI). In this randomized, single-blinded, crossover, and dose-comparison study, 26 healthy middle-aged participants ingested dark chocolate (25 g) either with a low concentration (LC) (211.7 mg) or a high concentration (HC) (635 mg) of cacao polyphenols. Thereafter, their brain activities were analyzed during continuous and effortful cognitive tasks relevant to executive functioning using fMRI in two consecutive 15 min sessions (25 and 50 min after ingestion). We observed significant interaction effects between chocolate consumption and brain activity measurement sessions in the left dorsolateral prefrontal cortex and left inferior parietal lobule. After HC chocolate ingestion, these areas showed lower brain activity in the second session than in the first session; however, these areas showed higher activity in the second session after LC chocolate ingestion. These results suggest that cacao polyphenol-enriched dark chocolate enhances the efficient use of cognitive resources by reducing the effort of brain activity.


Subject(s)
Cacao , Chocolate , Humans , Middle Aged , Brain/diagnostic imaging , Cognition , Magnetic Resonance Imaging , Polyphenols , Cross-Over Studies
13.
Heliyon ; 8(11): e11853, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36468139

ABSTRACT

Chronic oxidative stress induces deterioration of health and a risk for the onset of various diseases. Previous clinical studies revealed that electrolyzed hydrogen water (EHW) is effective to reduce oxidative stress during hemodialysis in patients with chronic dialysis. In the present observational study, we investigated the antioxidant effects of a daily continuous intake of EHW in healthy adults. The concentrations of serum reactive oxygen metabolites-derived compounds (d-ROMs) and blood urea nitrogen in healthy volunteers (n = 64) who had a habit of intake over 500 mL/day of EHW at least 5 days a week for longer than 6 months were lower than those of age- and sex-matched controls (n = 470) without the habit of EHW intake. Oxidation stress index which the ratio between concentrations in d-ROMs and biological antioxidant potential was correlated with the serum concentration of high-sensitivity C-reactive protein or low-density lipoprotein cholesterol in the EHW group. These results suggest that the continuous intake of EHW induces antioxidant effects and may contribute to alleviate the risk of various oxidative stress-related dysfunctions and diseases in healthy adults.

14.
Br J Cancer ; 127(9): 1680-1690, 2022 11.
Article in English | MEDLINE | ID: mdl-35986085

ABSTRACT

BACKGROUND: The prognostic significance of germline variants in homologous recombination repair genes in advanced prostate cancer (PCa), especially with regard to hormonal therapy, remains controversial. METHODS: Germline DNA from 549 Japanese men with metastatic and/or castration-resistant PCa was sequenced for 27 cancer-predisposing genes. The associations between pathogenic variants and clinical outcomes were examined. Further, for comparison, DNA from prostate biopsy tissue samples from 80 independent patients with metastatic PCa were analysed. RESULTS: Forty-four (8%) patients carried germline pathogenic variants in one of the analysed genes. BRCA2 was most frequently altered (n = 19), followed by HOXB13 (n = 9), PALB2 (n = 5) and ATM (n = 5). Further, the BRCA1, BRCA2, PALB2 and ATM variants showed significant association with a short time to castration resistance and overall survival (hazard ratio = 1.99 and 2.36; 95% CI, 1.15-3.44 and 1.23-4.51, respectively), independent of other clinical variables. Based on log-rank tests, the time to castration resistance was also significantly short in patients with BRCA1, BRCA2, PALB2 or ATM somatic mutations and TP53 mutations. CONCLUSIONS: Germline variants in BRCA1, BRCA2, PALB2 or ATM are independent prognostic factors of the short duration of response to hormonal therapy in advanced PCa.


Subject(s)
Germ-Line Mutation , Prostatic Neoplasms , Male , Humans , Prognosis , BRCA2 Protein/genetics , Genes, BRCA2 , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Mutation , Genetic Predisposition to Disease , BRCA1 Protein/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Ataxia Telangiectasia Mutated Proteins/genetics
15.
Prostate ; 82 Suppl 1: S86-S96, 2022 08.
Article in English | MEDLINE | ID: mdl-35657153

ABSTRACT

Clinical genomic testing is becoming routine in prostate cancer, as biomarker-driven therapies such as poly-ADP ribose polymerase (PARP) inhibitors and anti-PD1 immunotherapy are now approved for select men with castration-resistant prostate cancer harboring alterations in DNA repair genes. Challenges for precision medicine in prostate cancer include an overall low prevalence of actionable genomic alterations and a still limited understanding of the impact of tumor heterogeneity and co-occurring alterations on treatment response and outcomes across diverse patient populations. Expanded tissue-based technologies such as whole-genome sequencing, transcriptome analysis, epigenetic analysis, and single-cell RNA sequencing have not yet entered the clinical realm and could potentially improve upon our understanding of how molecular features of tumors, intratumoral heterogeneity, and the tumor microenvironment impact therapy response and resistance. Blood-based technologies including cell-free DNA, circulating tumor cells (CTCs), and extracellular vesicles (EVs) are less invasive molecular profiling resources that could also help capture intraindividual tumor heterogeneity and track dynamic changes that occur in the context of specific therapies. Furthermore, molecular imaging is an important biomarker tool within the framework of prostate cancer precision medicine with a capability to detect heterogeneity across metastases and potential therapeutic targets less invasively. Here, we review recent technological advances that may help promote the future implementation and value of precision oncology testing for patients with advanced prostate cancer.


Subject(s)
Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Biomarkers , Genomics , Humans , Male , Precision Medicine/methods , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/therapy , Tumor Microenvironment
16.
Cancer Sci ; 113(7): 2434-2445, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35524940

ABSTRACT

Early diagnosis of urological diseases is often difficult due to the lack of specific biomarkers. More powerful and less invasive biomarkers that can be used simultaneously to identify urological diseases could improve patient outcomes. The aim of this study was to evaluate a urological disease-specific scoring system established with a machine learning (ML) approach using Ig N-glycan signatures. Immunoglobulin N-glycan signatures were analyzed by capillary electrophoresis from 1312 serum subjects with hormone-sensitive prostate cancer (n = 234), castration-resistant prostate cancer (n = 94), renal cell carcinoma (n = 100), upper urinary tract urothelial cancer (n = 105), bladder cancer (n = 176), germ cell tumors (n = 73), benign prostatic hyperplasia (n = 95), urosepsis (n = 145), and urinary tract infection (n = 21) as well as healthy volunteers (n = 269). Immunoglobulin N-glycan signature data were used in a supervised-ML model to establish a scoring system that gave the probability of the presence of a urological disease. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUC). The supervised-ML urologic disease-specific scores clearly discriminated the urological diseases (AUC 0.78-1.00) and found a distinct N-glycan pattern that contributed to detect each disease. Limitations included the retrospective and limited pathological information regarding urological diseases. The supervised-ML urological disease-specific scoring system based on Ig N-glycan signatures showed excellent diagnostic ability for nine urological diseases using a one-time serum collection and could be a promising approach for the diagnosis of urological diseases.


Subject(s)
Kidney Neoplasms , Prostatic Neoplasms , Urinary Bladder Neoplasms , Biomarkers, Tumor , Humans , Immunoglobulins , Machine Learning , Male , Polysaccharides , Retrospective Studies , Urinary Bladder Neoplasms/pathology
17.
Article in English | MEDLINE | ID: mdl-35487690

ABSTRACT

Defective DNA mismatch repair genes can lead to microsatellite instability (MSI)-high status in prostate cancer (PC). Accumulation of replication errors in DNA leads to the production of abundant neoantigens, which could be targets for immune checkpoint inhibitors (CPIs). However, the incidence of MSI-high PC is low, and not all patients show a satisfactory therapeutic response to CPIs. Here, we present the case of a patient with MSI-high castration-resistant PC who showed a remarkable and durable response to pembrolizumab. The patient was resistant to abiraterone, docetaxel, and cabazitaxel and was suffering from multiple tumor-associated or treatment-related complications, such as urinary tract infection, infective endocarditis, and uncontrollable prostatic hemorrhage. Soon after the start of pembrolizumab therapy, the patient showed a dramatic decrease in prostate-specific antigen from 35.67 ng/mL to an undetectable level and a remarkable reduction in the size of a massive prostate mass and lymph node metastases, with an absence of treatment-related complications. Specimens from the transurethral resection of prostate cancer during cabazitaxel treatment for control of prostate bleeding and also that from the prostate biopsy at initial diagnosis revealed MSI-high status. Immunohistochemistry showed loss of MSH2 and MSH6, and whole-exome sequencing revealed an approximate tumor mutation burden of 61 mutations/Mb as well as biallelic loss of MSH2 Pembrolizumab could show a significant effect even in a heavily treated patient with MSI-high advanced PC. Accumulation of detailed clinical and genomic information of cases of MSI-high PC treated with pembrolizumab is necessary for optimal patient selection.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Transurethral Resection of Prostate , Antibodies, Monoclonal, Humanized , Humans , Male , Microsatellite Instability , MutS Homolog 2 Protein/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics
18.
PLoS One ; 16(10): e0258892, 2021.
Article in English | MEDLINE | ID: mdl-34673839

ABSTRACT

Increasing road crashes related to occupational drivers' deteriorating health has become a social problem. To prevent road crashes, warnings and predictions of increased crash risk based on drivers' conditions are important. However, in on-road driving, the relationship between drivers' physiological condition and crash risk remains unclear due to difficulties in the simultaneous measurement of both. This study aimed to elucidate the relationship between drivers' physiological condition assessed by autonomic nerve function (ANF) and an indicator of rear-end collision risk in on-road driving. Data from 20 male truck drivers (mean ± SD, 49.0±8.2 years; range, 35-63 years) were analyzed. Over a period of approximately three months, drivers' working behavior data, such as automotive sensor data, and their ANF data were collected during their working shift. Using the gradient boosting decision tree method, a rear-end collision risk index was developed based on the working behavior data, which enabled continuous risk quantification. Using the developed risk index and drivers' ANF data, effects of their physiological condition on risk were analyzed employing a logistic quantile regression method, which provides wider information on the effects of the explanatory variables, after hierarchical model selection. Our results revealed that in on-road driving, activation of sympathetic nerve activity and inhibition of parasympathetic nerve activity increased each quantile of the rear-end collision risk index. The findings suggest that acute stress-induced drivers' fatigue increases rear-end collision risk. Hence, in on-road driving, drivers' physiological condition monitoring and ANF-based stress warning and relief system can contribute to promoting the prevention of rear-end truck collisions.


Subject(s)
Accidents, Traffic/prevention & control , Automobile Driving , Fatigue , Motor Vehicles , Adult , Attention , Humans , Male , Middle Aged , Reaction Time , Risk
19.
Clin Cancer Res ; 27(22): 6164-6173, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34526361

ABSTRACT

PURPOSE: Although cell-free DNA (cfDNA) testing is expected to drive cancer precision medicine, little is known about the significance of detecting low-frequency variants in circulating cell-free tumor DNA (ctDNA) in castration-resistant prostate cancer (CRPC). We aimed to identify genomic profile including low-frequency variants in ctDNA from patients with CRPC and investigate the clinical utility of detecting variants with variant allele frequency (VAF) below 1%. EXPERIMENTAL DESIGN: This prospective, multicenter cohort study enrolled patients with CRPC eligible for treatment with abiraterone or enzalutamide. We performed targeted sequencing of pretreatment cfDNA and paired leukocyte DNA with molecular barcodes, and ctDNA variants with a VAF ≥0.1% were detected using an in-house pipeline. We investigated progression-free survival (PFS) and overall survival (OS) after different ctDNA fraction cutoffs were applied. RESULTS: One hundred patients were analyzed (median follow-up 10.7 months). We detected deleterious ATM, BRCA2, and TP53 variants even in samples with ctDNA fraction below 2%. When the ctDNA fraction cutoff value of 0.4% was applied, significant differences in PFS and OS were found between patients with and without defects in ATM or BRCA2 [HR, 2.52; 95% confidence interval (CI), 1.24-5.11; P = 0.0091] and TP53 (HR, 3.74; 95% CI, 1.60-8.71; P = 0.0014). However, these differences were no longer observed when the ctDNA fraction cutoff value of 2% was applied, and approximately 50% of the samples were classified as ctDNA unquantifiable. CONCLUSIONS: Detecting low-frequency ctDNA variants with a VAF <1% is important to identify clinically informative genomic alterations in CRPC.


Subject(s)
Cell-Free Nucleic Acids , Prostatic Neoplasms, Castration-Resistant , Biomarkers, Tumor/genetics , Biomarkers, Tumor/therapeutic use , Cell-Free Nucleic Acids/genetics , Cohort Studies , Humans , Male , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics
20.
Hinyokika Kiyo ; 67(7): 331-337, 2021 Jul.
Article in Japanese | MEDLINE | ID: mdl-34353016

ABSTRACT

We herein report a case of penile pyoderma gangrenosum that was successfully treated with prednisolone and by urethrocutaneostomy without penectomy. A man in his 50s visite dour department because of painful urination. Pyuria and redness of the external urethral meatus were present. Treatment for urethritis with antibiotics did not improve his symptoms, and a painful ulcer and fistula formation between the glans and urethra subsequently developed. Microbiological cultures revealed no growth, and punch biopsy showed only nonspecific inflammation, leading to a diagnosis of penile pyoderma gangrenosum. We initiated prednisolone (PSL) at 40 mg once daily following placement of an indwelling suprapubic cystostomy tube for dysuria. However, the treatment was ineffective. Therefore, the dosage of PSL was increased to 65 mg once daily. The ulcer disappeared, but urethral stricture remained. Six hundred days after PSL treatment, we performed urethrocutaneostomy. The patient became free of the cystostomy and was able to urinate spontaneously. In recent years, there has been an increasing number of reports of penile preservation in the treatment of penile pyoderma gangrenosum, but knowledge regarding which patients require urethral surgery is lacking. Urologists should keep in mind increased susceptibility to infection, pathergy and possible recurrence, when considering urethral surgery for penile pyoderma gangrenosum.


Subject(s)
Pyoderma Gangrenosum , Urethral Stricture , Cystostomy , Humans , Male , Prednisolone/therapeutic use , Pyoderma Gangrenosum/drug therapy , Pyoderma Gangrenosum/surgery , Urethra
SELECTION OF CITATIONS
SEARCH DETAIL
...