Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Nagoya J Med Sci ; 84(4): 782-798, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36544598

ABSTRACT

We hypothesized that, compared with young males, young females have a smaller decrease in blood flow to the inactive limb, accompanied by a smaller increase in arterial blood pressure, during dynamic exercise with increased inspiratory muscle work. Young males and females performed dynamic knee-extension and -flexion exercises for 10 min (spontaneous breathing for 5 min and voluntary hyperpnoea with or without inspiratory resistance for 5 min). Mean arterial blood pressure (MAP) and mean blood flow (MBF) in the brachial artery were continuously measured by means of finger photoplethysmography and Doppler ultrasound, respectively. No sex differences were found in the ΔMAP and ΔMBF (Δ: from baseline) during exercise without inspiratory resistance. In contrast, the ΔMAP during exercise with inspiratory resistive breathing was greater (P < 0.05) in males (+31.3 ± 2.1 mmHg, mean ± SE) than females (+18.9 ± 3.2 mmHg). The MBF during exercise with inspiratory resistance did not change in males (-4.4 ± 10.6 mL/min), whereas it significantly increased in females (+25.2 ± 15.4 mL/min). These results suggest that an attenuated inspiratory muscle-induced metaboreflex in young females affects blood flow distribution during submaximal dynamic leg exercise.


Subject(s)
Inhalation , Leg , Male , Female , Humans , Blood Pressure/physiology , Inhalation/physiology , Leg/blood supply , Leg/physiology , Respiratory Muscles , Respiration , Muscle, Skeletal/physiology
2.
Exp Physiol ; 107(9): 1094-1104, 2022 09.
Article in English | MEDLINE | ID: mdl-35770992

ABSTRACT

NEW FINDINGS: What is the central question of this study? Increased work of breathing and the accumulation of metabolites have neural and cardiovascular consequences through a respiratory muscle-induced metaboreflex. The influence of the respiratory muscle-induced metaboreflex on splanchnic blood flow in humans remains unknown. What is the main finding and its importance? Coeliac artery blood flow decreased gradually during inspiratory resistive breathing, accompanied by a progressive increase in arterial blood pressure. It is possible that the respiratory muscle-induced metaboreflex contributes to splanchnic blood flow regulation. ABSTRACT: The purpose of this study was to clarify the effect of increasing inspiratory muscle work on coeliac artery blood flow. Eleven healthy young males completed the study. The subjects performed voluntary hyperventilation with or without inspiratory resistance (loading or non-loading trial; tidal volume of 40% of vital capacity and breathing frequency of 20 breaths/min). The loading trial was conducted with inspiratory resistance (40% of maximal inspiratory pressure) and was terminated when the subjects could no longer maintain the target tidal volume or breathing frequency. The non-loading trial was conducted without inspiratory resistance and was of the same duration as the loading trial. Arterial blood pressure was recorded using finger photoplethysmography, and coeliac artery blood flow was measured using Doppler ultrasound. Mean arterial blood pressure increased gradually during the loading trial (mean ± SD; from 89.0 ± 10.8 to 103.9 ± 17.3 mmHg) but not in the non-loading trial (from 88.7 ± 5.9 to 90.4 ± 9.9 mmHg). Coeliac artery blood flow and coeliac vascular conductance decreased gradually during the loading trial (from 601.2 ± 155.7 to 482.6 ± 149.5 mL/min and from 6.9 ± 2.2 to 4.8 ± 1.7 mL/min/mmHg, respectively) but were unchanged in the non-loading trial (from 630.7 ± 157.1 to 635.6 ± 195.7 mL/min and from 7.1 ± 1.8 to 7.2 ± 2.9 mL/min/mmHg, respectively). These results show that increasing inspiratory muscle work affects splanchnic blood flow regulation, and we suggest that this might be mediated by the inspiratory muscle-induced metaboreflex.


Subject(s)
Inhalation , Work of Breathing , Blood Pressure/physiology , Celiac Artery , Humans , Inhalation/physiology , Male , Respiratory Muscles/physiology
3.
Exp Physiol ; 107(8): 825-833, 2022 08.
Article in English | MEDLINE | ID: mdl-35749656

ABSTRACT

NEW FINDINGS: What is the central question of this study? Sympathetic vasomotor outflow is reduced during low-intensity dynamic leg exercise in younger individuals: does ageing influence the sympathoinhibitory effect during low-intensity leg cycling? What is the main finding and its importance? Muscle sympathetic nerve activity during low-intensity cycling decreased in older males, as seen in young males. It is possible that cardiopulmonary baroreflex-mediated inhibition of sympathetic vasomotor outflow during dynamic leg exercise is preserved in healthy older males. ABSTRACT: Muscle sympathetic nerve activity (MSNA) is reduced during low-intensity dynamic leg exercise in young males. It is suggested that this inhibition is mediated by loading of the cardiopulmonary baroreceptors. The purpose of this study was to clarify the impact of age on MSNA during dynamic leg exercise. Nine younger males (YM, mean ± SD, 20 ± 1 years) and nine older males (OM, 72 ± 3 years) completed the study. The subjects performed two 4-min cycling exercises at 10% of their heart rate reserve using a cycle ergometer in a semirecumbent position (MSNA and estimated central venous pressure (eCVP) trials). MSNA was recorded via microneurography of the left radial nerve. The CVP was estimated based on peripheral venous pressure, which was monitored using a cannula in the right large antecubital vein. The magnitude of the increase in mean arterial blood pressure during leg cycling was larger in OM (+9.3 ± 5.5 mmHg) compared with YM (+2.8 ± 4.7 mmHg). MSNA burst frequency was decreased during cycling in both YM (-8.1 ± 3.8 bursts/min) and OM (-10.6 ± 3.3 bursts/min), but no significant difference was found between the two groups. The eCVP increased during exercise in both groups, and there was no difference in the changes in eCVP between YM (+1.1 ± 0.4 mmHg) and OM (+1.2 ± 0.7 mmHg). These data indicate that inhibition of sympathetic vasomotor outflow during low-intensity cycling appears in OM as seen in YM. It is possible that the muscle pump-induced loading of the cardiopulmonary baroreflex is preserved during cycling in healthy older males.


Subject(s)
Leg , Muscle, Skeletal , Aged , Baroreflex/physiology , Bicycling , Blood Pressure/physiology , Heart Rate/physiology , Humans , Leg/physiology , Male , Muscle, Skeletal/physiology , Sympathetic Nervous System/physiology
4.
Respir Physiol Neurobiol ; 296: 103812, 2022 02.
Article in English | MEDLINE | ID: mdl-34741844

ABSTRACT

We hypothesized that the trained distance runners, who have a relatively high respiratory muscle endurance, but not high respiratory muscle strength, have lower dyspneic sensations during submaximal running. Twenty-one male collegiate distance runners participated. Incremental respiratory endurance tests (IRET) and maximal inspiratory mouth pressure (PImax) measurements were performed under resting conditions. A submaximal exercise test was also performed on a treadmill at two different speeds (16 and 18 km/h) for 4 min each, and the subjects reported the rate of dyspnea (range: 0-10). The time to endpoint during the IRET, an index of respiratory muscle endurance, ranged from 9.4 to 18.8 min, and PImax, as an index of inspiratory muscle strength, ranged from 74.1 to 137.0 cmH2O. The dyspnea rating during running at 16 and 18 km/h ranged from 1 to 6 and from 4 to 8, respectively. The relative exercise intensity was approximately 80 % of peak oxygen uptake (VO2peak) at 16 km/h and 90 %VO2peak at 18 km/h. The time to endpoint during the IRET was significantly negatively correlated with dyspnea during running at 18 km/h (r = -0.459, P = 0.040), but not at 16 km/h (r = -0.161, P = 0.470). There was no significant correlation between PImax and dyspnea during running at 16 km/h (r = -0.003, P = 0.989) or 18 km/h (r = 0.070, P = 0.755). These results suggest that dyspneic sensations during high-intensity running are related to respiratory muscle endurance, but not inspiratory muscle strength, in trained distance runners.


Subject(s)
Dyspnea/physiopathology , Muscle Strength/physiology , Physical Endurance/physiology , Respiratory Muscles/physiology , Running/physiology , Adult , Humans , Male , Physical Conditioning, Human , Young Adult
5.
Exp Physiol ; 106(3): 736-747, 2021 03.
Article in English | MEDLINE | ID: mdl-33428277

ABSTRACT

NEW FINDINGS: What is the central question of this study? Increased respiratory muscle activation is associated with neural and cardiovascular consequences via the respiratory muscle-induced metaboreflex. Does ageing and/or sex influence the arterial blood pressure response during voluntary normocapnic incremental hyperpnoea? What is the main finding and its importance? The increase in blood pressure during hyperpnoea was smaller in younger females than in older females, whereas no difference was found between older males and older females. The blunted respiratory muscle-induced metaboreflex in younger females is normalized with advancing age, whereas ageing has no such effect in males. ABSTRACT: We hypothesized that older females (OF) have a greater arterial blood pressure response to increased respiratory muscle work compared with younger females (YF) and that no such difference exists between older males (OM) and younger males (YM). To test these hypotheses, cardiovascular responses during voluntary normocapnic incremental hyperpnoea were evaluated and compared between older and younger subjects. An incremental respiratory endurance test (IRET) was performed as follows: target minute ventilation was initially set at 30% of the maximal voluntary ventilation (MVV12) and was increased by 10% of MVV12 every 3 min. The test was terminated when the subject could not maintain the target percentage of MVV12. Heart rate and mean arterial blood pressure (MAP) were recorded continuously. The increase in MAP from baseline (ΔMAP) during the IRET in OM (+24.0 ± 14.7 mmHg, mean ± SD) did not differ (P = 0.144) from that in YM (+24.3 ± 13.4 mmHg), but it was greater (P = 0.004) in OF (+31.2 ± 11.6 mmHg) than in YF (+10.3 ± 5.5 mmHg). No significant difference in ΔMAP during the IRET was observed between OM and OF (P = 0.975). These results suggest that the respiratory muscle-induced metaboreflex is blunted in YF, but it could be normalized with advancing age. In males, ageing has little effect on the respiratory muscle-induced metaboreflex. These results show no sex difference in the respiratory muscle-induced metaboreflex in older adults.


Subject(s)
Respiratory Muscles , Sex Characteristics , Aged , Blood Pressure/physiology , Female , Heart Rate/physiology , Humans , Hyperventilation , Male , Muscle, Skeletal , Respiratory Muscles/physiology
6.
Phys Act Nutr ; 24(2): 30-37, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32698259

ABSTRACT

PURPOSE: The present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (V˙O2 max) or 40% V˙O2 max) on muscle oxygenation, energy metabolism, and endocrine responses. METHODS: Ten males were recruited in the present study. The subjects performed three trials: (1) endurance exercise at 40% V˙O2 max without BFR (NBFR40), (2) endurance exercise at 25% V˙O2 max with BFR (BFR25), and (3) endurance exercise at 40% V˙O2 max with BFR (BFR40). The exercises were performed for 15 min during which the pedaling frequency was set at 70 rpm. In BFR25 and BFR40, 2 min of pressure phase (equivalent to 160 mmHg) followed by 1 min of release phase were repeated five times (5 × 3 min) throughout 15 minutes of exercise. During exercise, muscle oxygenation and concentration of respiratory gases were measured. The blood samples were collected before exercise, immediately after 15 min of exercise, and at 15, 30, and 60 minutes after completion of exercise. RESULTS: Deoxygenated hemoglobin (deoxy-Hb) level during exercise was significantly higher with BFR25 and BFR40 than that with NBFR40. BFR40 showed significantly higher total-hemoglobin (total-Hb) than NBFR40 during 2 min of pressure phase. Moreover, exercise-induced lactate elevation and pH reduction were significantly augmented in BFR40, with concomitant increase in serum cortisol concentration after exercise. Carbohydrate (CHO) oxidation was significantly higher with BFR40 than that with NBFR40 and BFR25, whereas fat oxidation was lower with BFR40. CONCLUSION: Deoxy-Hb and total Hb levels were significantly increased during 15 min of pedaling exercise in BFR25 and BFR40, indicating augmented local hypoxia and blood volume (blood perfusion) in the muscle. Moreover, low-and moderate-intensity exercise with BFR facilitated CHO oxidation.

7.
Respir Physiol Neurobiol ; 275: 103387, 2020 04.
Article in English | MEDLINE | ID: mdl-31945516

ABSTRACT

The purpose of this study was to clarify whether the menstrual cycle affects the cardiovascular and limb blood flow responses during hyperpnoea. Fifteen young female subjects participated. An incremental respiratory endurance test was performed at the early follicular (EF) and midluteal (ML) phases. Target minute ventilation was initially set at 30 % of maximal voluntary ventilation (MVV12) and was increased by 10 %MVV12 every 3 min. The test was terminated when the subjects no longer maintained the target ventilation. Mean arterial blood pressure (MBP) and mean blood flow in the brachial artery were continuously measured. There were no significant differences in the increase in MBP (EF: +13.0 ±â€¯7.9 mmHg vs. ML: + 15.4 ±â€¯12.9 mmHg during the test, F = 0.70, P = 0.59) and the decrease in brachial blood flow between the phases. These results suggest that menstrual cycle does not affect respiratory muscle-induced metaboreflex in young women.


Subject(s)
Blood Pressure/physiology , Menstrual Cycle/physiology , Regional Blood Flow/physiology , Respiration , Respiratory Muscles/physiology , Adolescent , Adult , Baroreflex/physiology , Brachial Artery/physiology , Female , Humans , Respiratory Function Tests , Young Adult
8.
J Exerc Nutrition Biochem ; 23(1): 48-54, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31010274

ABSTRACT

PURPOSE: The combined effect of different types of post-exercise treatment has not been fully explored. We investigated the effect of combined cold water immersion (CWI) and compression garment (CG) use after maximal eccentric exercise on maximal muscle strength, indirect muscle damage markers in the blood, muscle thickness, and muscle soreness score 24 h after exercise. METHODS: Ten men performed two trials (CWI + CG and CON) in random order. In the CWI + CG trial, the subjects performed 15 min of CWI (15°C), followed by wearing of a lower-body CG for 24 h after exercise. In the CON trial, there was no post-exercise treatment. The exercise consisted of 6 × 10 maximal isokinetic (60°·s-1) eccentric knee extensions using one lower limb. The maximal voluntary contraction (MVC) and maximal isokinetic (60°·s-1) strength during knee extension, as well as the indirect muscle damage markers, were evaluated before exercise and 24 h after exercise. RESULTS: The maximal muscle strength decreased in both trials (p < 0.001), with no difference between them. The exercise-induced elevation in the myoglobin concentration tended to be lower in the CWI + CG trial than in the CON trial (p = 0.060). The difference in the MVC, maximal isokinetic strength, muscle thickness, and muscle soreness score between the trials was not significant. CONCLUSION: CWI followed by wearing of a CG after maximal eccentric exercise tended to attenuate the exercise-induced elevation of indirect muscle damage markers in the blood.

9.
J Strength Cond Res ; 33(1): 36-43, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28445224

ABSTRACT

Kasai, N, Mizuno, S, Ishimoto, S, Sakamoto, E, Maruta, M, Kurihara, T, Kurosawa, Y, and Goto, K. Impact of six consecutive days of sprint training in hypoxia on performance in competitive sprint runners. J Strength Cond Res 33(1): 36-43, 2019-The purpose of this study was to determine the effects of 6 successive days of repeated sprint (RS) training in moderate hypoxia on anaerobic capacity in 100-200-m sprint runners. Eighteen male sprint runners (age, 20.0 ± 0.3 years; height, 175.9 ± 1.1 cm; and body mass, 65.0 ± 1.2 kg) performed repeated cycling sprints for 6 consecutive days in either normoxic (NOR; fraction of inspired oxygen [FiO2], 20.9%; n = 9) or hypoxic conditions (HYPO; FiO2, 14.5%; n = 9). The RS ability (10 × 6-second sprints), 30-second maximal sprint ability, maximal oxygen uptake ((Equation is included in full-text article.)max), and 60-m running time on the track were measured before and after the training period. Intramuscular phosphocreatine (PCr) content (quadriceps femoris muscle) was measured by P-magnetic resonance spectroscopy (P-MRS) before and after the training period. Both groups showed similar improvements in RS ability after the training period (p < 0.05). Power output during the 30-second maximal sprint test and (Equation is included in full-text article.)max did not change significantly after the training period in either group. Running time for 0-10 m improved significantly after the training period in the HYPO only (before, 1.39 ± 0.01 seconds; after, 1.34 ± 0.02 seconds, p < 0.05). The HYPO also showed a significant increase in intramuscular PCr content after the training period (before, 31.5 ± 1.3 mM; after, 38.2 ± 2.8 mM, p < 0.05). These results suggest that sprint training for 6 consecutive days in hypoxia or normoxia improved RS ability in competitive sprint runners.


Subject(s)
Athletic Performance , Hypoxia , Physical Conditioning, Human , Running/physiology , Athletes , Humans , Male , Phosphocreatine/analysis , Quadriceps Muscle/chemistry , Young Adult
10.
J Exerc Nutrition Biochem ; 22(2): 12-17, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30149421

ABSTRACT

PURPOSE: To determine the effects of exercise-induced muscle damage, we examined irisin responses during level running (LR), with less muscle damage, and downhill running (DHR), with greater muscle damage under equivalent exercise duration and oxygen consumption (⩒O2) conditions. METHODS: Fifteen healthy men (age: 21.6 ± 2.0 y, height: 170 ± 1.3 cm, weight: 64.8 ± 2.7 kg) were randomly assigned to either the LR group (n = 8) or the DHR group (n = 7). Subjects in the LR group performed treadmill running at 70% of maximum oxygen uptake (⩒O2max) for 30 min on a 0% gradient. In contrast, subjects in the DHR group performed the same exercise on a -10% gradient. Blood samples were collected before exercise, immediately after exercise, and 1, 3, and 24 h after exercise. RESULTS: No significant interaction (group × time) or main effect of group or time was observed for changes in plasma irisin concentrations over time (P > 0.05). However, the area under the curve of plasma irisin concentrations during a 3-h post-exercise period was significantly greater in the DHR (239,197 ± 8,166 ng/mL) group than in the LR (92,293 ± 8,755 ng/ml) group (P < 0.05). The blood lactate, serum cortisol, myoglobin, and plasma interleukin-6 concentrations were significantly higher in the DHR group than in the LR group after exercise (P < 0.05 for all variables). CONCLUSION: DHR associated with marked muscle damage promoted a greater increase in exercise-induced irisin did LR after the same duration under identical VO2 conditions.

11.
Front Physiol ; 8: 834, 2017.
Article in English | MEDLINE | ID: mdl-29123488

ABSTRACT

Purpose: To examine the effects of wearing a lower-body compression garment with different body coverage areas during prolonged running on exercise performance and muscle damage. Methods: Thirty male subjects were randomly assigned to one of three groups: (1) wearing a compression tights with 15 mmHg to thigh [n = 10, CT group], (2) wearing a compression socks with 15 mmHg to calf [n = 10, CS group], and (3) wearing a lower-body garment with < 5 mmHg to thigh and calf [n = 10, CON group]. The exercise consisted of 120 min of uphill running at 55% of [Formula: see text]O2max. Heart rate (HR), rate of perceived exertion (RPE), and running economy (evaluated by VO2) were monitored during exercise every 10 min. Changes in maximum voluntary contraction (MVC) of knee extension and plantar flexion, height of counter movement jump (CMJ) and drop jump (DJ), and scores of subjective feelings of muscle soreness and fatigue were evaluated before exercise, and 60 and 180 min after exercise. Blood samples were collected to determine blood glucose, lactate, serum free fatty acid, myoglobin (Mb), high-sensitivity C-reactive protein, and plasma interleukin-6 concentrations before exercise (after 20 min of rest), at 60 min of exercise, immediately after exercise, and 60 and 180 min after exercise. Results: Changes in HR, RPE, and running economy during exercise did not differ significantly among the three groups. MVC of knee extension and plantar flexion, and DJ decreased significantly following exercise, with no difference among groups. The serum Mb concentration increased significantly with exercise in all groups, whereas the area under the curve for Mb concentration during 180 min post-exercise was significantly lower in the CT group (13,833 ± 1,397 pg/mL 180 min) than in the CON group (24,343 ± 3,370 pg/mL 180 min, P = 0.03). Conclusion: Wearing compression garment on the thigh significantly attenuated the increase in serum Mb concentration after exercise, suggesting that exercise-induced muscle damage was attenuated.

12.
Sports Med Open ; 3(1): 25, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28674872

ABSTRACT

BACKGROUND: The efficacy of wearing [a] compression garment (CG) between repeated bouts of exercise within a same day has not been fully understood. The present study determined the effect of wearing a CG after strenuous exercise sessions (consisting of sprint exercise, resistance exercise, drop jump) twice a day on exercise performance, muscle damage, and inflammatory responses. METHODS: Eleven physically active males (age, 22.7 ± 0.9 years; height, 175.7 ± 6.7 cm; body mass, 73.6 ± 10.2 kg; BMI, 23.8 ± 2.7 kg/m2) performed two trials (a randomized crossover design), consisting of the trial with either wearing a whole-body CG during post-exercise period (CG trial) or the trial with wearing a normal garment without specific pressure (CON trial). Two exercise sessions were conducted in the morning (09:00-10:00, Ex1) and afternoon (14:00-15:00, Ex2). Immediately after completing 60 min of each exercise, the subjects in the CG trial changed into a whole-body CG. Time-course changes in exercise performance (bench press power, jump performances, repeated sprint ability), blood variables (lactate, glucose, myoglobin, creatine kinase, interleukin-6, leptin), and scores of subjective feeling (fatigue, muscle soreness) were compared between the CG and CON trials before Ex1 (8:40), immediately before Ex2 (14:00, 4 h after Ex1), 4 h after Ex2 (19:00), and 24 h after the onset of Ex1 (9:00). RESULTS: Two bouts of exercise significantly decreased performances of counter movement jump (main effect for time: P = 0.04, F = 3.75, partial η 2 = 0.27) and rebound jump (main effect for time: P = 0.00, F = 12.22, partial η 2 = 0.55), while no significant difference was observed between the two trials (interaction: P = 0.10, F = 1.96, partial η 2 = 0.16 for counter movement jump, P = 0.93, F = 0.01, partial η 2 = 0.001 for rebound jump). Repeated sprint ability (power output during 10 × 6 s maximal sprint, 30-s rest periods between sprints) did not differ significantly between the two trials at any time points. Power output during bench press exercise was not significantly different between the two trials (interaction: P = 0.46, F = 0.99, partial η 2 = 0.09 for Ex1, P = 0.74, F = 0.38, partial η 2 = 0.04 for Ex2, P = 0.22, F = 1.54, partial η 2 = 0.13 for 24 h after the onset of Ex1). Serum myoglobin, creatine kinase, leptin, and plasma interleukin-6 were not significantly different between the two trials (interaction: P = 0.16, F = 2.23, partial η 2 = 0.18 for myoglobin; P = 0.39, F = 0.81, partial η 2 = 0.08 for creatine kinase; P = 0.28, F = 1.30, partial η 2 = 0.13 for leptin; P = 0.34, F = 1.05, partial η 2 = 0.12 for interleukin-6). Muscle soreness at 24 h during post-exercise period was significantly lower in the CG trial than in the CON trial for pectoralis major muscle (P = 0.04), while the value was inversely lower in the CON trial for hamstring (P = 0.047). CONCLUSIONS: Wearing a whole-body CG during the post-exercise period after two bouts of strenuous exercise sessions separated with 4 h of rest did not promote recovery of muscle function for lower limb muscles nor did it attenuate exercise-induced muscle damage in physically active males.

13.
PLoS One ; 12(5): e0178620, 2017.
Article in English | MEDLINE | ID: mdl-28562650

ABSTRACT

OBJECTIVE: To investigate the effect of wearing a lower body compression garment (CG) exerting different pressure levels during prolonged running on exercise-induced muscle damage and the inflammatory response. METHODS: Eight male participants completed three exercise trials in a random order. The exercise consisted of 120 min of uphill running at 60% of VO2max. The exercise trials included 1) wearing a lower-body CG with 30 mmHg pressure [HIGH]; 2) wearing a lower-body CG with 15 mmHg pressure [MED]; and 3) wearing a lower-body garment with < 5 mmHg pressure [CON]. Heart rate (HR), and rate of perceived exertion for respiration and legs were monitored continuously during exercise. Time-course change in jump height was evaluated before and immediately after exercise. Blood samples were collected to determine blood glucose, lactate, serum creatine kinase, myoglobin, free fatty acids, glycerol, cortisol, and plasma interleukin-6 (IL-6) concentrations before exercise, 60 min of the 120 min exercise period, immediately after exercise, and 60 min after exercise. RESULTS: Jump height was significantly higher immediately after the exercise in the MED trial compared with that in the HIGH trial (P = 0.04). Mean HR during the 120 min exercise was significantly lower in the MED trial (162 ± 4 bpm) than that in the CON trial (170 ± 4 bpm, P = 0.01). Plasma IL-6 concentrations increased significantly with exercise in all trials, but the area under the curve during exercise was significantly lower in the MED trial (397 ± 58 pg/ml·120 min) compared with that in the CON trial (670 ± 86 pg/ml·120 min, P = 0.04). CONCLUSION: Wearing a lower body CG exerting medium pressure (approximately 15 mmHg) significantly attenuated decrease in jump performance than that with wearing a lower body CG exerting high pressure (approximately 30 mmHg). Furthermore, exercise-induced increases in HR and the inflammatory response were significantly smaller with CG exerted 15mmHg than that with garment exerted < 5 mmHg.


Subject(s)
Clothing , Running/physiology , Body Temperature Regulation , Humans
14.
Springerplus ; 5: 506, 2016.
Article in English | MEDLINE | ID: mdl-27186470

ABSTRACT

BACKGROUND: Carbohydrate ingestion during exercise is known to attenuate exercise-induced elevation of plasma IL-6 concentration. However, the influence of timing of carbohydrate ingestion remains unclear. PURPOSE: The present study investigated the influence of different timing of carbohydrate ingestion during a simulated soccer game on exercise performance, metabolic and inflammatory responses. METHODS: Seven active males performed 3 exercise trials in a randomized order. The exercise consisted of two consecutive bouts of 45 min running (4-16 km/h), separated with 15 min rest period between bouts. The subjects ingested carbohydrate gel (1.0 g/kg) immediately before the first bout of exercise (ONE), immediately before first and second bouts of exercise (0.5 g/kg for each ingestion) (TWO) or placebo immediately before exercise (PLA) Time course changes of maximal jump height, peak power output during 6-s maximal pedaling, perceived fatigue and heart rate (HR) were monitored. Blood samples were also drawn to determine blood glucose, serum insulin, free fatty acid (FFA), myoglobin (Mb), creatine kinase (CK) and plasma IL-6 concentrations. RESULTS: Blood glucose and serum insulin concentrations were significantly higher in the ONE trial after first bout of 45 min exercise compared with PLA trial (P < 0.05), while serum FFA concentration was significantly elevated in PLA compared with ONE and TWO trials after second bout of exercise (P < 0.05). However, changes of jump height, peak power output during 6-s maximal pedaling, perceived fatigue, HR, or indirect muscle damage (Mb, CK) and inflammatory (IL-6) markers were not significantly different among three trials (P > 0.05). CONCLUSIONS: The timing of carbohydrate ingestion did not affect exercise performance, exercise-induced muscle damage or inflammatory response during a simulated soccer game.

15.
Springerplus ; 4: 310, 2015.
Article in English | MEDLINE | ID: mdl-26155449

ABSTRACT

BACKGROUND: This study determined the effect of repeated sprint training in hypoxia (RSH) in female athletes. METHODS: Thirty-two college female athletes performed repeated cycling sprints of two sets of 10 × 7-s sprints with a 30-s rest between sprints twice per week for 4 weeks under either normoxic conditions (RSN group; FiO2, 20.9%; n = 16) or hypoxic conditions (RSH group; FiO2, 14.5%; n = 16). The repeated sprint ability (10 × 7-s sprints) and maximal oxygen uptake ([Formula: see text]) were determined before and after the training period. RESULTS: After training, when compared to pre-values, the mean power output was higher in all sprints during the repeated sprint test in the RSH group but only for the second half of the sprints in the RSN group (P ≤ 0.05). The percentage increases in peak and mean power output between before and after the training period were significantly greater in the RSH group than in the RSN group (peak power output, 5.0 ± 0.7% vs. 1.5 ± 0.9%, respectively; mean power output, 9.7 ± 0.9% vs. 6.0 ± 0.8%, respectively; P < 0.05). [Formula: see text] did not change significantly after the training period in either group. CONCLUSION: Four weeks of RSH further enhanced the peak and mean power output during repeated sprint test compared with RSN.

SELECTION OF CITATIONS
SEARCH DETAIL