Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Commun Biol ; 5(1): 647, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35788695

ABSTRACT

The continuous emergence of microbial pathogens for which there are no effective antimicrobials threatens global health, necessitating novel antimicrobial approaches. Here, we present a targeted antimicrobial strategy that can be applied to various microbial pathogens. A photoimmuno-conjugate composed of an antibody against the target pathogen and a photoplastic phthalocyanine-derivative probe that generates photo-induced mechanical stress was developed based on photoimmuno-technology. This strategy, named as photoimmuno-antimicrobial strategy (PIAS), eliminates targeted pathogens, regardless of the target species or drug-resistance status. Specifically, PIAS acts on a broad range of microbes, including the bacterial pathogen Staphylococcus aureus, fungal pathogen Candida albicans, including their drug-resistant strains, and viral pathogen SARS-CoV-2, the causative agent of COVID-19. Furthermore, PIAS protects mice from fatal infections without damaging the non-targeted host microbiota and tissues. This study may contribute to the development of next-generation anti-infective therapies.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Mice , SARS-CoV-2
2.
mBio ; 13(4): e0084522, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35852317

ABSTRACT

Staphylococcus aureus, a major pathogen of community-acquired and nosocomial-associated infections, forms biofilms consisting of extracellular matrix-embedded cell aggregates. S. aureus biofilm formation on implanted medical devices can cause local and systemic infections due to the dispersion of cells from the biofilms. Usually, conventional antibiotic treatments are not effective against biofilm-related infections, and there is no effective treatment other than removing the contaminated devices. Therefore, the development of new therapeutic agents to combat biofilm-related infections is urgently needed. We conducted high-throughput screening of S. aureus biofilm inhibitors and obtained a small compound, JBD1. JBD1 strongly inhibits biofilm formation of S. aureus, including methicillin-resistant strains. In addition, JBD1 activated the respiratory activity of S. aureus cells and increased the sensitivity to aminoglycosides. Furthermore, it was shown that the metabolic profile of S. aureus was significantly altered in the presence of JBD1 and that metabolic remodeling was induced. Surprisingly, these JBD1-induced phenotypes were blocked by adding an excess amount of the electron carrier menaquinone to suppress respiratory activation. These results indicate that JBD1 induces biofilm inhibition and metabolic remodeling through respiratory activation. This study demonstrates that compounds that enhance the respiratory activity of S. aureus may be potential leads in the development of therapeutic agents for chronic S. aureus-biofilm-related infections. IMPORTANCE Chronic infections caused by Staphylococcus aureus are characterized by biofilm formation, suggesting that methods to control biofilm formation may be of therapeutic value. The small compound JBD1 showed biofilm inhibitory activity and increased sensitivity to aminoglycosides and respiratory activity of S. aureus. Additionally, transcriptomic and metabolomic analyses demonstrated that JBD1 induced metabolic remodeling. All JBD1-induced phenotypes were suppressed by the extracellular addition of an excess amount of menaquinone, indicating that JBD1-mediated respiratory stimulation inhibits biofilm formation and triggers metabolic remodeling in S. aureus. These findings suggest a strategy for developing new therapeutic agents for chronic S. aureus infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms , Cell Respiration , Humans , Microbial Sensitivity Tests , Staphylococcus aureus/genetics , Vitamin K 2/pharmacology
3.
NPJ Biofilms Microbiomes ; 8(1): 17, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379830

ABSTRACT

Biofilms are surface-bound microbial communities that are typically embedded in a matrix of self-produced extracellular polymeric substances and can cause chronic infections. Extracellular DNA is known to play a crucial role in biofilm development in diverse bacteria; however, the existence and function of RNA are poorly understood. Here, we show that RNA contributes to the structural integrity of biofilms formed by the human pathogen Staphylococcus aureus. RNase A dispersed both fresh and mature biofilms, indicating the importance of RNA at various stages. RNA-sequencing analysis demonstrated that the primary source of RNA in the biofilm matrix was the Brain Heart Infusion medium (>99.32%). RNA purified from the medium promoted biofilm formation. Microscopic and molecular interaction analyses demonstrated that polysaccharides were critical for capturing and stabilizing external RNA in biofilms, which contributes to biofilm organization. These findings provide a basis for exploring the role of externally derived substances in bacterial biofilm organization.


Subject(s)
RNA , Staphylococcus aureus , Biofilms , Construction Materials , Humans , Polysaccharides , Staphylococcus aureus/genetics
4.
J Mol Biol ; 433(3): 166750, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33310019

ABSTRACT

In Escherichia coli, the major bacterial Hsp70 system consists of DnaK, three J-domain proteins (JDPs: DnaJ, CbpA, and DjlA), and nucleotide exchange factor GrpE. JDPs determine substrate specificity for the Hsp70 system; however, knowledge on their specific role in bacterial cellular functions is limited. In this study, we demonstrated the role of JDPs in bacterial survival during heat stress and the DnaK-regulated formation of curli-extracellular amyloid fibers involved in biofilm formation. Genetic analysis demonstrate that only DnaJ is essential for survival at high temperature. On the other hand, either DnaJ or CbpA, but not DjlA, is sufficient to activate DnaK in curli production. Additionally, several DnaK mutants with reduced activity are able to complement the loss of curli production in E. coli ΔdnaK, whereas they do not recover the growth defect of the mutant strain at high temperature. Biochemical analyses reveal that DnaJ and CbpA are involved in the expression of the master regulator CsgD through the solubilization of MlrA, a DNA-binding transcriptional activator for the csgD promoter. Furthermore, DnaJ and CbpA also keep CsgA in a translocation-competent state by preventing its aggregation in the cytoplasm. Our findings support a hierarchical model wherein the role of JDPs in the Hsp70 system differs according to individual cellular functions.


Subject(s)
Models, Biological , Protein Domains , Protein Interaction Domains and Motifs , Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/physiology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Protein Binding , Protein Transport , Proteins/chemistry , Proteins/genetics , Sequence Deletion , Solubility
5.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Article in English | MEDLINE | ID: mdl-31570396

ABSTRACT

Staphylococcus aureus is responsible for numerous community outbreaks and is one of the most frequent causes of nosocomial infections with significant morbidity and mortality. While the function of lytic transglycosylases (LTs) in relation to cell division, biofilm formation, and antibiotic resistance has been determined for several bacteria, their role in S. aureus remains largely unknown. The only known LTs in S. aureus are immunodominant staphylococcal antigen A (IsaA) and Staphylococcus epidermidis D protein (SceD). Our study demonstrates that, in a strain of methicillin-resistant S. aureus (MRSA), IsaA and SceD contribute differently to biofilm formation and ß-lactam resistance. Deletion of isaA, but not sceD, led to decreased biofilm formation. Additionally, in isaA-deleted strains, ß-lactam resistance was significantly decreased compared to that of wild-type strains. Plasmid-based expression of mecA, a major determinant of ß-lactam resistance in MRSA, in an isaA-deleted strain did not restore ß-lactam resistance, demonstrating that the ß-lactam susceptibility phenotype is exhibited by isaA mutant regardless of the production level of PBP2a. Overall, our results suggest that IsaA is a potential therapeutic target for MRSA infections.

6.
Jpn J Infect Dis ; 72(5): 323-325, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31061362

ABSTRACT

Lactobacillus rhamnosus is a gram-positive, rod-shaped bacterium and is commonly used as a probiotic to maintain intestinal health. Recently, surveillance of Lactobacillus bacteremia was conducted using a biochemical test and conventional PCR assay; however, these assays are unable to quantify the target and might yield a false positive result. In this study, we developed an L. rhamnosus-specific quantitative PCR assay, which yields accurate and reproducible results on the basis of the specificity of a TaqMan probe targeting the unique 16S rDNA sequence of L. rhamnosus. The assay specifically detected the target bacterium, L. rhamnosus, and no nonspecific signals were generated under the assay conditions. With genomic DNA from the cells of L. rhamnosus (101 to 106 cells), the threshold cycle values showed a linear dependence (R2 = 0.9993). This L. rhamnosus-specific quantitative PCR assay can advance the research into the effects of this microorganism on microflora, microbial infections, and on the host.


Subject(s)
Bacterial Load/methods , Lacticaseibacillus rhamnosus/classification , Lacticaseibacillus rhamnosus/isolation & purification , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Humans , Lacticaseibacillus rhamnosus/genetics , Oligonucleotide Probes/genetics , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity , Time Factors
7.
Infect Immun ; 87(4)2019 04.
Article in English | MEDLINE | ID: mdl-30670553

ABSTRACT

Chronic and fatal infections caused by Staphylococcus aureus are sometimes associated with biofilm formation. Secreted proteins and cell wall-anchored proteins (CWAPs) are important for the development of polysaccharide-independent biofilms, but functional relationships between these proteins are unclear. In the present study, we report the roles of the extracellular adherence protein Eap and the surface CWAP SasG in S. aureus MR23, a clinical methicillin-resistant isolate that forms a robust protein-dependent biofilm and accumulates a large amount of Eap in the extracellular matrix. Double deletion of eap and sasG, but not single eap or sasG deletion, reduced the biomass of the formed biofilm. Mutational analysis demonstrated that cell wall anchorage is essential for the role of SasG in biofilm formation. Confocal laser scanning microscopy revealed that MR23 formed a rugged and thick biofilm; deletion of both eap and sasG reduced biofilm ruggedness and thickness. Although sasG deletion did not affect either of these features, eap deletion reduced the ruggedness but not the thickness of the biofilm. This indicated that Eap contributes to the rough irregular surface structure of the MR23 biofilm and that both Eap and SasG play roles in biofilm thickness. The level of pathogenicity of the Δeap ΔsasG strain in a silkworm larval infection model was significantly lower (P < 0.05) than those of the wild type and single-deletion mutants. Collectively, these findings highlight the redundant and distinct roles of a secreted protein and a CWAP in biofilm formation and pathogenicity of S. aureus and may inform new strategies to control staphylococcal biofilm infections.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Cell Wall/metabolism , Membrane Proteins/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Staphylococcus aureus/pathogenicity , Animals , Bacterial Proteins/genetics , Bombyx/microbiology , Cell Wall/genetics , Gene Deletion , Humans , Larva/microbiology , Membrane Proteins/genetics , Staphylococcus aureus/genetics , Virulence
8.
Ann Clin Microbiol Antimicrob ; 17(1): 44, 2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30577829

ABSTRACT

BACKGROUND: Catheter-related infection (CRI) is one of the serious challenges in clinical practice. This preliminary clinical study aimed to examine whether next-generation sequencing (NGS) targeting 16S rDNA, which was PCR-amplified directly from the tip of a central venous catheter (CVC), can be used to identify causative pathogens in CRI, compared to the culture method. METHODS: Hospitalized patients, from whom a CVC had just been removed, were prospectively enrolled and divided into the CRI-suspected and routine removal groups. DNA was extracted from the sonication fluid of CVC specimens derived from patients. For analysis of bacterial composition by NGS, the V3-V4 fragments of bacterial 16S rDNA were PCR-amplified, followed by index PCR and paired-end sequencing on an Illumina MiSeq device. Conventional culture methods were also performed in the CRI-suspected group. RESULTS: Of CVCs collected from the 156 enrolled patients (114 men; mean age 65.6 years), a total of 14 specimens [nine out of 31 patients suspected with CRI and five out of 125 patients without infection symptoms (routine removal group)] were PCR-positive. In five patients with definite CRI, Staphylococcus was the most frequently detected genus by NGS (4/5 specimens), although no pathogens were detected by NGS in the one remaining specimen. The genera identified by NGS were consistent with those from conventional culture tests. There was high agreement between NGS and the culture method in the CRI-suspected group, with sensitivity and specificity values of 80.0% and 76.9%, respectively; meanwhile, the false-positive rate of NGS was as low as 4.0% in the routine removal group. Moreover, several genera, besides the genus identified by culture test, were detected in each patient with definite CRI and surgical site infection (SSI). Additionally, in one patient with SSI, Enterococcaceae were detected not only by NGS but also by abdominal abscess drainage culture. CONCLUSIONS: NGS targeting 16S rDNA was able to analyze the bacterial composition of CVC specimens and detect causative pathogens in patients with CRI and was therefore suggested as a promising diagnostic tool for CRI.


Subject(s)
Catheter-Related Infections/microbiology , Central Venous Catheters/microbiology , DNA, Bacterial/genetics , Adult , Aged , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged
9.
Commun Biol ; 1: 52, 2018.
Article in English | MEDLINE | ID: mdl-30271935

ABSTRACT

Biofilms are intricate communities of microorganisms embedded in a self-produced matrix of extracellular polymer, which provides microbes survival advantages in stressful environments and can cause chronic infections in humans. Curli are functional amyloids that assemble on the extracellular surface of enteric bacteria such as Escherichia coli during biofilm development and colonization. The molecular chaperone DnaK, a bacterial Hsp70 homologue, promotes curli biogenesis via unknown mechanism(s). Here we show that DnaK increases the expression of CsgA and CsgB-the major and minor structural components of curli, respectively-via a quantity and quality control of RpoS, a stationary phase-specific alternative sigma factor regulating bacterial transcription, and CsgD, the master transcriptional regulator of curli formation. DnaK also keeps CsgA and CsgB in a translocation-competent state by binding to their signal peptides prone to aggregation. Our findings suggest that DnaK controls the homoeostasis of curli biogenesis at multiple stages to organize the biofilm matrix.

10.
Sci Rep ; 8(1): 8452, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855532

ABSTRACT

Biofilms are well-organised communities of microbes embedded in a self-produced extracellular matrix (e.g., curli amyloid fibers) and are associated with chronic infections. Therefore, development of anti-biofilm drugs is important to combat with these infections. Previously, we found that flavonol Myricetin inhibits curli-dependent biofilm formation by Escherichia coli (IC50 = 46.2 µM). In this study, we tested activities of seven Myricetin-derivatives to inhibit biofilm formation by E. coli K-12 in liquid culture. Among them, only Epigallocatechin gallate (EGCG), a major catechin in green tea, inhibited biofilm formation of K-12 (IC50 = 5.9 µM) more efficiently than Myricetin. Transmission electron microscopy and immunoblotting analyses demonstrated that EGCG prevented curli production by suppressing the expression of curli-related proteins. Quantitative RT-PCR analysis revealed that the transcripts of csgA, csgB, and csgD were significantly reduced in the presence of EGCG. Interestingly, the cellular level of RpoS, a stationary-phase specific alternative sigma factor, was reduced in the presence of EGCG, whereas the rpoS transcript was not affected. Antibiotic-chase experiments and genetic analyses revealed that EGCG accelerated RpoS degradation by ATP-dependent protease ClpXP in combination with its adaptor RssB. Collectively, these results provide significant insights into the development of drugs to treat chronic biofilm-associated infections.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/drug effects , Escherichia coli/physiology , Flavonoids/pharmacology , Bacterial Proteins/genetics , Biofilms/growth & development , Catechin/analogs & derivatives , Catechin/pharmacology , Flavonoids/chemistry , Gene Expression Regulation, Bacterial/drug effects , Sigma Factor/genetics , Sigma Factor/metabolism
11.
Front Microbiol ; 9: 182, 2018.
Article in English | MEDLINE | ID: mdl-29491850

ABSTRACT

The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P. acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes.

12.
Sci Rep ; 8(1): 2254, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396526

ABSTRACT

Staphylococcus aureus is a major causative agent for biofilm-associated infections. Inside biofilms, S. aureus cells are embedded in an extracellular matrix (ECM) composed of polysaccharide-intercellular adhesins (PIA), proteins, and/or extracellular DNA (eDNA). However, the importance of each component and the relationship among them in biofilms of diverse strains are largely unclear. Here, we characterised biofilms formed by 47 S. aureus clinical isolates. In most (42/47) of the strains, biofilm formation was augmented by glucose supplementation. Sodium chloride (NaCl)-triggered biofilm formation was more prevalent in methicillin-sensitive S. aureus (15/24) than in methicillin-resistant strain (1/23). DNase I most effectively inhibited and disrupted massive biofilms, and Proteinase K was also effective. Anti-biofilm effects of Dispersin B, which cleaves PIA, were restricted to PIA-dependent biofilms formed by specific strains and showed significant negative correlations with those of Proteinase K, suggesting independent roles of PIA and proteins in each biofilm. ECM profiling demonstrated that eDNA was present in all strains, although its level differed among strains and culture conditions. These results indicate that eDNA is the most common component in S. aureus biofilms, whereas PIA is important for a small number of isolates. Therefore, eDNA can be a primary target for developing eradication strategies against S. aureus biofilms.


Subject(s)
Biofilms/growth & development , DNA, Bacterial/metabolism , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Bacteriological Techniques , Deoxyribonuclease I/metabolism , Endopeptidase K/metabolism , Humans , Methicillin Resistance , Staphylococcal Infections/microbiology , Staphylococcus aureus/isolation & purification
13.
J Microbiol Methods ; 145: 93-97, 2018 02.
Article in English | MEDLINE | ID: mdl-29288674

ABSTRACT

Cellular glycogen levels reflect the activity of RpoS, an important stress-inducible bacterial sigma factor known to regulate several stress-resistance related genes, such as katE, encoding hydroperoxidase II (HPII), and the glg genes, encoding glycogen synthesis enzymes, in Escherichia coli. In this study, a straightforward assay for measuring glycogen levels and RpoS activity was developed combining the ease and simplicity of qualitative approaches. The assay reagent was a 2% iodine solution (2% iodine/1M NaOH), and the basic principle of this assay is the iodine-glycogen reaction, which produces a reddish brown color that can be measured using a spectrophotometer. A calibration plot using a known amount of glycogen yielded the best linear fit over a range of 10-300µg/assay (R2=0.994). The applicability of the assay for measuring the glycogen level of various samples was assessed using a wild type (WT) E. coli K-12 strain, glycogen- and RpoS-deficient isogenic mutants, and clinical bacterial isolates with or without RpoS activity; the assay generated reproducible results. Additionally, the assay was successfully applied for measuring glycogen levels in human cells. In conclusion, we developed a straightforward and cost-effective assay for measuring glycogen levels, which can be applied for measuring RpoS activity.


Subject(s)
Bacterial Proteins/metabolism , Biological Assay/methods , Escherichia coli K12/physiology , Glycogen/analysis , Sigma Factor/metabolism , Bacterial Proteins/genetics , Catalase/metabolism , Colorimetry , Escherichia coli K12/drug effects , Escherichia coli K12/genetics , Humans , Iodine/pharmacology , Mutation , PC-3 Cells , Sensitivity and Specificity , Sigma Factor/genetics , Stress, Physiological/drug effects , Stress, Physiological/genetics
15.
Article in English | MEDLINE | ID: mdl-28758016

ABSTRACT

Formation of bacterial biofilms on medical devices can cause severe or fatal infectious diseases. In particular, biofilm-associated infections caused by methicillin-resistant Staphylococcus aureus are difficult to eradicate because the biofilm is strongly resistant to antibiotics and the host immune response. There is no effective treatment for biofilm-associated infectionss, except for surgical removal of contaminated medical devices followed by antibiotic therapy. Here we show that norgestimate, an acetylated progestin, effectively inhibits biofilm formation by staphylococcal strains, including methicillin-resistant S. aureus, without inhibiting their growth, decreasing the selective pressure for emergence of resistance. 17-Deacetyl norgestimate, a metabolite of norgestimate, shows much weaker inhibitory activity against staphylococcal biofilm formation, indicating that the acetyl group of norgestimate is important for its activity. Norgestimate inhibits staphylococcal biofilm formation by inhibiting production of polysaccharide intercellular adhesin and proteins in the extracellular matrix. Proteome analysis of S. aureus indicated that norgestimate represses the expression of the cell wall-anchored protein SasG, which promotes intercellular adhesion, and of the glycolytic enzyme enolase, which plays a secondary role in biofilm formation. Notably, norgestimate induces remarkable changes in cell wall morphology, characterized by increased thickness and abnormal rippled septa. Furthermore, norgestimate increases the expression level of penicillin binding protein 2 and resensitizes methicillin-resistant S. aureus to ß-lactam antibiotics. These results suggest that norgestimate is a promising lead compound for the development of drugs to treat biofilm-associated infections, as well as for its ability to resensitize methicillin-resistant S. aureus to ß-lactam antibiotics.

16.
Front Microbiol ; 8: 656, 2017.
Article in English | MEDLINE | ID: mdl-28491053

ABSTRACT

RpoS is a key stress-inducible sigma factor that regulates stress resistance genes in Escherichia coli, such as the katE gene encoding catalase HPII and the glg genes encoding glycogen synthesis proteins. Monitoring RpoS activity can provide information on the stress sensitivity of E. coli isolates in clinical settings because the RpoS in these isolates is often mutated. In the present study, we found a novel, missense point mutation at RpoS residue 128 in a clinical Shiga toxin-producing E. coli (STEC) isolate. This mutation caused RpoS dysfunction and increased stress sensitivity. A mutant rpoS was cloned from a clinical STEC that is vulnerable to cold temperature and oxidative stresses. Mutant RpoS protein expression was detected in the clinical isolate, and this RpoS was non-functional according to HPII activity and glycogen levels, which are positively regulated by RpoS and thus are used as indicators for RpoS function. A reporter assay with ß-galactosidase indicated that the dysfunction occurred at the transcriptional level of genes regulated by RpoS. Furthermore, substitution analysis indicated that the hydrophobicity of the amino acid at residue 128 was critical for RpoS activity; the simulation analysis indicated that the amino acids of RNA polymerase (RNAP) that interact with RpoS residue 128 are hydrophobic, suggesting that this hydrophobic interaction is critical for RpoS activity. In addition, substitution of Ile128 to Pro128 abolished RpoS activity, possibly as a result of disruption of the secondsary structure around residue 128, indicating that the structure is also a crucial factor for RpoS activity. These results indicate that only one point mutation at a hydrophobic residue of the complex formed during transcription leads to a critical change in RpoS regulation. Moreover, we found that Ile128 is widely conserved among various bacteria: several bacterial strains have Met128 or Leu128, which are hydrophobic residues, and these strains had similar or higher RpoS activity than that observed with Ile128 in this study. These data indicate that the hydrophobicity of the amino acid at residue 128 is critical for RpoS activity and is consequently important for bacterial survival. Taken together, these findings may contribute to a deeper understanding of protein functional mechanisms and bacterial stress responses.

17.
Genome Announc ; 4(6)2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27811101

ABSTRACT

Klebsiella oxytoca can be either pathogenic or beneficial, depending on conditions. These opposing characteristics have not been fully elucidated. Here, we report the complete sequence of the K. oxytoca JKo3 genome, consisting of a single circular chromosome of 5,943,791 bp and four plasmids.

18.
Sci Rep ; 6: 25889, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27180609

ABSTRACT

Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community.


Subject(s)
Biofilms/growth & development , Gram-Negative Bacteria/cytology , Gram-Positive Bacteria/cytology , Exocytosis , Extracellular Matrix/microbiology , Gram-Negative Bacteria/physiology , Gram-Positive Bacteria/physiology , Microscopy, Electron, Scanning/instrumentation , Solutions
19.
Genome Announc ; 4(2)2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27081127

ABSTRACT

We report here the complete genome sequence ofKlebsiella pneumoniaestrain YH43, isolated from sweet potato. The genome consists of a single circular chromosome of 5,520,319 bp in length. It carries 8 copies of rRNA operons, 86 tRNA genes, 5,154 protein-coding genes, and thenifgene cluster for nitrogen fixation.

20.
Nucleic Acids Res ; 43(14): e92, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-25883145

ABSTRACT

The intrinsically stochastic dynamics of mRNA metabolism have important consequences on gene regulation and non-genetic cell-to-cell variability; however, no generally applicable methods exist for studying such stochastic processes quantitatively. Here, we describe the use of the amyloid-binding probe Thioflavin T (ThT) for monitoring RNA metabolism in vitro and in vivo. ThT fluoresced strongly in complex with bacterial total RNA than with genomic DNA. ThT bound purine oligoribonucleotides preferentially over pyrimidine oligoribonucleotides and oligodeoxyribonucleotides. This property enabled quantitative real-time monitoring of poly(A) synthesis and phosphorolysis by polyribonucleotide phosphorylase in vitro. Cellular analyses, in combination with genetic approaches and the transcription-inhibitor rifampicin treatment, demonstrated that ThT mainly stained mRNA in actively dividing Escherichia coli cells. ThT also facilitated mRNA metabolism profiling at the single-cell level in diverse bacteria. Furthermore, ThT can also be used to visualise transitions between non-persister and persister cell states, a phenomenon of isogenic subpopulations of antibiotic-sensitive bacteria that acquire tolerance to multiple antibiotics due to stochastically induced dormant states. Collectively, these results suggest that probing mRNA dynamics with ThT is a broadly applicable approach ranging from the molecular level to the single-cell level.


Subject(s)
Fluorescent Dyes , RNA/metabolism , Thiazoles , Adenosine Diphosphate/analysis , Benzothiazoles , Polyribonucleotide Nucleotidyltransferase/analysis , Polyribonucleotide Nucleotidyltransferase/metabolism , RNA, Bacterial/metabolism , Single-Cell Analysis , Thiazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...