Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Circ Res ; 133(1): 6-21, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37232152

ABSTRACT

BACKGROUND: Obesity induces cardiomyopathy characterized by hypertrophy and diastolic dysfunction. Whereas mitophagy mediated through an Atg7 (autophagy related 7)-dependent mechanism serves as an essential mechanism to maintain mitochondrial quality during the initial development of obesity cardiomyopathy, Rab9 (Ras-related protein Rab-9A)-dependent alternative mitophagy takes over the role during the chronic phase. Although it has been postulated that DRP1 (dynamin-related protein 1)-mediated mitochondrial fission and consequent separation of the damaged portions of mitochondria are essential for mitophagy, the involvement of DRP1 in mitophagy remains controversial. We investigated whether endogenous DRP1 is essential in mediating the 2 forms of mitophagy during high-fat diet (HFD)-induced obesity cardiomyopathy and, if so, what the underlying mechanisms are. METHODS: Mice were fed either a normal diet or an HFD (60 kcal %fat). Mitophagy was evaluated using cardiac-specific Mito-Keima mice. The role of DRP1 was evaluated using tamoxifen-inducible cardiac-specific Drp1knockout (Drp1 MCM) mice. RESULTS: Mitophagy was increased after 3 weeks of HFD consumption. The induction of mitophagy by HFD consumption was completely abolished in Drp1 MCM mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. The increase in LC3 (microtubule-associated protein 1 light chain 3)-dependent general autophagy and colocalization between LC3 and mitochondrial proteins was abolished in Drp1 MCM mice. Activation of alternative mitophagy was also completely abolished in Drp1 MCM mice during the chronic phase of HFD consumption. DRP1 was phosphorylated at Ser616, localized at the mitochondria-associated membranes, and associated with Rab9 and Fis1 (fission protein 1) only during the chronic, but not acute, phase of HFD consumption. CONCLUSIONS: DRP1 is an essential factor in mitochondrial quality control during obesity cardiomyopathy that controls multiple forms of mitophagy. Although DRP1 regulates conventional mitophagy through a mitochondria-associated membrane-independent mechanism during the acute phase, it acts as a component of the mitophagy machinery at the mitochondria-associated membranes in alternative mitophagy during the chronic phase of HFD consumption.


Subject(s)
Cardiomyopathies , Mitophagy , Animals , Mice , Autophagy/physiology , Cardiomyopathies/genetics , Dynamins/genetics , Dynamins/metabolism , Heart , Mitochondrial Dynamics , Mitophagy/physiology , Obesity/genetics
2.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36480290

ABSTRACT

Modification of cysteine residues by oxidative and nitrosative stress affects structure and function of proteins, thereby contributing to the pathogenesis of cardiovascular disease. Although the major function of thioredoxin 1 (Trx1) is to reduce disulfide bonds, it can also act as either a denitrosylase or transnitrosylase in a context-dependent manner. Here we show that Trx1 transnitrosylates Atg7, an E1-like enzyme, thereby stimulating autophagy. During ischemia, Trx1 was oxidized at Cys32-Cys35 of the oxidoreductase catalytic center and S-nitrosylated at Cys73. Unexpectedly, Atg7 Cys545-Cys548 reduced the disulfide bond in Trx1 at Cys32-Cys35 through thiol-disulfide exchange and this then allowed NO to be released from Cys73 in Trx1 and transferred to Atg7 at Cys402. Experiments conducted with Atg7 C402S-knockin mice showed that S-nitrosylation of Atg7 at Cys402 promotes autophagy by stimulating E1-like activity, thereby protecting the heart against ischemia. These results suggest that the thiol-disulfide exchange and the NO transfer are functionally coupled, allowing oxidized Trx1 to mediate a salutary effect during myocardial ischemia through transnitrosylation of Atg7 and stimulation of autophagy.


Subject(s)
Myocardial Ischemia , Thioredoxins , Animals , Mice , Autophagy , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Cysteine/metabolism , Disulfides , Myocardial Ischemia/genetics , Oxidation-Reduction , Thioredoxins/genetics , Thioredoxins/metabolism
3.
J Clin Invest ; 132(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35133975

ABSTRACT

The heart utilizes multiple adaptive mechanisms to maintain pump function. Compensatory cardiac hypertrophy reduces wall stress and oxygen consumption, thereby protecting the heart against acute blood pressure elevation. The nuclear effector of the Hippo pathway, Yes-associated protein 1 (YAP), is activated and mediates compensatory cardiac hypertrophy in response to acute pressure overload (PO). In this study, YAP promoted glycolysis by upregulating glucose transporter 1 (GLUT1), which in turn caused accumulation of intermediates and metabolites of the glycolytic, auxiliary, and anaplerotic pathways during acute PO. Cardiac hypertrophy was inhibited and heart failure was exacerbated in mice with YAP haploinsufficiency in the presence of acute PO. However, normalization of GLUT1 rescued the detrimental phenotype. PO induced the accumulation of glycolytic metabolites, including l-serine, l-aspartate, and malate, in a YAP-dependent manner, thereby promoting cardiac hypertrophy. YAP upregulated the GLUT1 gene through interaction with TEA domain family member 1 (TEAD1) and HIF-1α in cardiomyocytes. Thus, YAP induces compensatory cardiac hypertrophy through activation of the Warburg effect.


Subject(s)
Cardiomegaly , Myocytes, Cardiac , YAP-Signaling Proteins/metabolism , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Citric Acid Cycle , Glucose Transporter Type 1/genetics , Glycolysis , Mice , Myocytes, Cardiac/metabolism
4.
Cardiovasc Res ; 118(12): 2638-2651, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35018428

ABSTRACT

AIMS: Well-controlled mitochondrial homeostasis, including a mitochondria-specific form of autophagy (hereafter referred to as mitophagy), is essential for maintaining cardiac function. The molecular mechanism mediating mitophagy during pressure overload (PO) is poorly understood. We have shown previously that mitophagy in the heart is mediated primarily by Atg5/Atg7-independent mechanisms, including Unc-51-like kinase 1 (Ulk1)-dependent alternative mitophagy, during myocardial ischaemia. Here, we investigated the role of alternative mitophagy in the heart during PO-induced hypertrophy. METHODS AND RESULTS: Mitophagy was observed in the heart in response to transverse aortic constriction (TAC), peaking at 3-5 days. Whereas mitophagy is transiently up-regulated by TAC through an Atg7-dependent mechanism in the heart, peaking at 1 day, it is also activated more strongly and with a delayed time course through an Ulk1-dependent mechanism. TAC induced more severe cardiac dysfunction, hypertrophy, and fibrosis in ulk1 cardiac-specific knock-out (cKO) mice than in wild-type mice. Delayed activation of mitophagy was characterized by the co-localization of Rab9 dots and mitochondria and phosphorylation of Rab9 at Ser179, major features of alternative mitophagy. Furthermore, TAC-induced decreases in the mitochondrial aspect ratio were abolished and the irregularity of mitochondrial cristae was exacerbated, suggesting that mitochondrial quality control mechanisms are impaired in ulk1 cKO mice in response to TAC. TAT-Beclin 1 activates mitophagy even in Ulk1-deficient conditions. TAT-Beclin 1 treatment rescued mitochondrial dysfunction and cardiac dysfunction in ulk1 cKO mice during PO. CONCLUSION: Ulk1-mediated alternative mitophagy is a major mechanism mediating mitophagy in response to PO and plays an important role in mediating mitochondrial quality control mechanisms and protecting the heart against cardiac dysfunction.


Subject(s)
Autophagy-Related Protein-1 Homolog , Cardiomegaly , Mitophagy , Animals , Aorta/surgery , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Cardiomegaly/etiology , Cardiomegaly/genetics , Cardiomegaly/metabolism , Hypertension/etiology , Hypertension/genetics , Hypertension/metabolism , Hypertrophy , Mice , Mitophagy/genetics , Mitophagy/physiology , Myocardial Ischemia/etiology , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
5.
Circ Res ; 129(12): 1105-1121, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34724805

ABSTRACT

RATIONALE: Obesity-associated cardiomyopathy characterized by hypertrophy and mitochondrial dysfunction. Mitochondrial quality control mechanisms, including mitophagy, are essential for the maintenance of cardiac function in obesity-associated cardiomyopathy. However, autophagic flux peaks at around 6 weeks of high-fat diet (HFD) consumption and declines thereafter. OBJECTIVE: We investigated whether mitophagy is activated during the chronic phase of cardiomyopathy associated with obesity (obesity cardiomyopathy) after general autophagy is downregulated and, if so, what the underlying mechanism and the functional significance are. METHODS AND RESULTS: Mice were fed either a normal diet or a HFD (60 kcal% fat). Mitophagy, evaluated using Mito-Keima, was increased after 3 weeks of HFD consumption and continued to increase after conventional mechanisms of autophagy were inactivated, at least until 24 weeks. HFD consumption time-dependently upregulated both Ser555-phosphorylated Ulk1 (unc-51 like kinase 1) and Rab9 (Ras-related protein Rab-9) in the mitochondrial fraction. Mitochondria were sequestrated by Rab9-positive ring-like structures in cardiomyocytes isolated from mice after 20 weeks of HFD consumption, consistent with the activation of alternative mitophagy. Increases in mitophagy induced by HFD consumption for 20 weeks were abolished in cardiac-specific ulk1 knockout mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. Rab9 S179A knock-in mice, in which alternative mitophagy is selectively suppressed, exhibited impaired mitophagy and more severe cardiac dysfunction than control mice following HFD consumption for 20 weeks. Overexpression of Rab9 in the heart increased mitophagy and protected against cardiac dysfunction during HFD consumption. HFD-induced activation of Rab9-dependent mitophagy was accompanied by upregulation of TFE3 (transcription factor binding to IGHM enhancer 3), which plays an essential role in transcriptional activation of mitophagy. CONCLUSIONS: Ulk1-Rab9-dependent alternative mitophagy is activated during the chronic phase of HFD consumption and serves as an essential mitochondrial quality control mechanism, thereby protecting the heart against obesity cardiomyopathy.


Subject(s)
Cardiomyopathies/metabolism , Mitochondria, Heart/metabolism , Mitophagy , Obesity/complications , Animals , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Cells, Cultured , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
7.
Commun Biol ; 4(1): 138, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514783

ABSTRACT

Heart failure (HF) occurs frequently among older individuals, and dysfunction of cardiac mitochondria is often observed. We here show the cardiac-specific downregulation of a certain mitochondrial component during the chronological aging of mice, which is detrimental to the heart. MitoNEET is a mitochondrial outer membrane protein, encoded by CDGSH iron sulfur domain 1 (CISD1). Expression of mitoNEET was specifically downregulated in the heart and kidney of chronologically aged mice. Mice with a constitutive cardiac-specific deletion of CISD1 on the C57BL/6J background showed cardiac dysfunction only after 12 months of age and developed HF after 16 months; whereas irregular morphology and higher levels of reactive oxygen species in their cardiac mitochondria were observed at earlier time points. Our results suggest a possible mechanism by which cardiac mitochondria may gradually lose their integrity during natural aging, and shed light on an uncharted molecular basis closely related to age-associated HF.


Subject(s)
Heart Failure/metabolism , Membrane Proteins/deficiency , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/metabolism , Age Factors , Animals , Heart Failure/genetics , Heart Failure/physiopathology , Iron-Binding Proteins/genetics , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism , Time Factors , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left
8.
Circ Heart Fail ; 14(1): e005890, 2021 01.
Article in English | MEDLINE | ID: mdl-33356364

ABSTRACT

BACKGROUND: We recently reported that treatment with rhBDNF (recombinant human brain-derived neurotrophic factor) improved the reduced exercise capacity of mice with heart failure (HF) after myocardial infarction (MI). Since BDNF is reported to enhance fatty acid oxidation, we herein conducted an in vivo investigation to determine whether the improvement in exercise capacity is due to the enhancement of the fatty acid oxidation of skeletal muscle via the AMPKα-PGC1α (adenosine monophosphate-activated protein kinase-ɑ-proliferator-activated receptor-r coactivator-1ɑ) axis. METHODS: MI and sham operations were conducted in C57BL/6J mice. Two weeks postsurgery, we randomly divided the MI mice into groups treated with rhBDNF or vehicle for 2 weeks. AMPKα-PGC1α signaling and mitochondrial content in the skeletal muscle of the mice were evaluated by Western blotting and transmission electron microscopy. Fatty acid ß-oxidation was examined by high-resolution respirometry using permeabilized muscle fiber. BDNF-knockout mice were treated with 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside, an activator of AMPK. RESULTS: The rhBDNF treatment significantly increased the expressions of phosphorylated AMPKα and PGC1α protein and the intermyofibrillar mitochondrial density in the MI mice. The lowered skeletal muscle mitochondrial fatty acid oxidation was significantly improved in the rhBDNF-treated MI mice. The reduced exercise capacity and mitochondrial dysfunction of the BDNF-knockout mice were improved by 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside. CONCLUSIONS: Beneficial effects of BDNF on the exercise capacity of mice with HF are mediated through an enhancement of fatty acid oxidation via the activation of AMPKα-PGC1α in skeletal muscle. BDNF may become a therapeutic option to improve exercise capacity as an alternative or adjunct to exercise training.


Subject(s)
AMP-Activated Protein Kinases/drug effects , Brain-Derived Neurotrophic Factor/pharmacology , Exercise Tolerance/drug effects , Fatty Acids/metabolism , Heart Failure/metabolism , Muscle, Skeletal/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects , AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Brain-Derived Neurotrophic Factor/genetics , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Male , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Muscle, Skeletal/metabolism , Muscle, Skeletal/ultrastructure , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Oxidation-Reduction/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Recombinant Proteins , Ribonucleosides/pharmacology
9.
JACC Basic Transl Sci ; 5(9): 931-945, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33015415

ABSTRACT

Fibrotic remodeling of the heart in response to injury contributes to heart failure, yet therapies to treat fibrosis remain elusive. Yes-associated protein (YAP) is activated in cardiac fibroblasts by myocardial infarction, and genetic inhibition of fibroblast YAP attenuates myocardial infarction-induced cardiac dysfunction and fibrosis. YAP promotes myofibroblast differentiation and associated extracellular matrix gene expression through engagement of TEA domain transcription factor 1 and subsequent de novo expression of myocardin-related transcription factor A. Thus, fibroblast YAP is a promising therapeutic target to prevent fibrotic remodeling and heart failure.

10.
Cardiovasc Res ; 116(10): 1742-1755, 2020 08 01.
Article in English | MEDLINE | ID: mdl-31584633

ABSTRACT

AIMS: Thioredoxin 1 (Trx1) is an evolutionarily conserved oxidoreductase that cleaves disulphide bonds in oxidized substrate proteins such as mechanistic target of rapamycin (mTOR) and maintains nuclear-encoded mitochondrial gene expression. The cardioprotective effect of Trx1 has been demonstrated via cardiac-specific overexpression of Trx1 and dominant negative Trx1. However, the pathophysiological role of endogenous Trx1 has not been defined with a loss-of-function model. To address this, we have generated cardiac-specific Trx1 knockout (Trx1cKO) mice. METHODS AND RESULTS: Trx1cKO mice were viable but died with a median survival age of 25.5 days. They developed heart failure, evidenced by contractile dysfunction, hypertrophy, and increased fibrosis and apoptotic cell death. Multiple markers consistently indicated increased oxidative stress and RNA-sequencing revealed downregulation of genes involved in energy production in Trx1cKO mice. Mitochondrial morphological abnormality was evident in these mice. Although heterozygous Trx1cKO mice did not show any significant baseline phenotype, pressure-overload-induced cardiac dysfunction, and downregulation of metabolic genes were exacerbated in these mice. mTOR was more oxidized and phosphorylation of mTOR substrates such as S6K and 4EBP1 was impaired in Trx1cKO mice. In cultured cardiomyocytes, Trx1 knockdown inhibited mitochondrial respiration and metabolic gene promoter activity, suggesting that Trx1 maintains mitochondrial function in a cell autonomous manner. Importantly, mTOR-C1483F, an oxidation-resistant mutation, prevented Trx1 knockdown-induced mTOR oxidation and inhibition and attenuated suppression of metabolic gene promoter activity. CONCLUSION: Endogenous Trx1 is essential for maintaining cardiac function and metabolism, partly through mTOR regulation via Cys1483.


Subject(s)
Energy Metabolism , Heart Failure/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , TOR Serine-Threonine Kinases/metabolism , Thioredoxins/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Energy Metabolism/genetics , Gene Expression Regulation , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/pathology , Myocytes, Cardiac/pathology , Oxidative Stress , Rats, Wistar , Signal Transduction , Thioredoxins/genetics
11.
JACC Basic Transl Sci ; 4(5): 611-622, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31768477

ABSTRACT

Patients with diabetes are more prone to developing heart failure in the presence of high blood pressure than those without diabetes. Yes-associated protein (YAP), a key effector of the Hippo signaling pathway, is persistently activated in diabetic hearts, and YAP plays an essential role in mediating the exacerbation of heart failure in response to pressure overload in the hearts of mice fed a high-fat diet. YAP induced dedifferentiation of cardiomyocytes through activation of transcriptional enhancer factor 1 (TEAD1), a transcription factor. Thus, YAP and TEAD1 are promising therapeutic targets for diabetic patients with high blood pressure to prevent the development of heart failure.

12.
JCI Insight ; 52019 08 08.
Article in English | MEDLINE | ID: mdl-31393858

ABSTRACT

Dual peroxisome proliferator-activated receptor (PPAR)α/γ agonists that were developed to target hyperlipidemia and hyperglycemia in type 2 diabetes patients, caused cardiac dysfunction or other adverse effects. We studied the mechanisms that underlie the cardiotoxic effects of a dual PPARα/γ agonist, tesaglitazar, in wild type and diabetic (leptin receptor deficient - db/db) mice. Mice treated with tesaglitazar-containing chow or high fat diet developed cardiac dysfunction despite lower plasma triglycerides and glucose levels. Expression of cardiac peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which promotes mitochondrial biogenesis, had the most profound reduction among various fatty acid metabolism genes. Furthermore, we observed increased acetylation of PGC1α, which suggests PGC1α inhibition and lowered sirtuin 1 (SIRT1) expression. This change was associated with lower mitochondrial abundance. Combined pharmacological activation of PPARα and PPARγ in C57BL/6 mice reproduced the reduction of PGC1α expression and mitochondrial abundance. Resveratrol-mediated SIRT1 activation attenuated tesaglitazar-induced cardiac dysfunction and corrected myocardial mitochondrial respiration in C57BL/6 and diabetic mice but not in cardiomyocyte-specific Sirt1-/- mice. Our data shows that drugs, which activate both PPARα and PPARγ lead to cardiac dysfunction associated with PGC1α suppression and lower mitochondrial abundance likely due to competition between these two transcription factors.


Subject(s)
Heart Failure/metabolism , PPAR alpha/metabolism , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisomes/metabolism , Sirtuin 1/metabolism , Alkanesulfonates/adverse effects , Animals , Blood Glucose , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , PPAR alpha/agonists , PPAR gamma/agonists , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Phenylpropionates/adverse effects , Receptors, Leptin/metabolism , Sirtuin 1/genetics , Transcription Factors , Transcriptome
13.
J Biol Chem ; 294(35): 13131-13144, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31311858

ABSTRACT

Inflammation is a central feature of cardiovascular disease, including myocardial infarction and heart failure. Reperfusion of the ischemic myocardium triggers a complex inflammatory response that can exacerbate injury and worsen heart function, as well as prevent myocardial rupture and mediate wound healing. Therefore, a more complete understanding of this process could contribute to interventions that properly balance inflammatory responses for improved outcomes. In this study, we leveraged several approaches, including global and regional ischemia/reperfusion (I/R), genetically modified mice, and primary cell culture, to investigate the cell type-specific function of the tumor suppressor Ras association domain family member 1 isoform A (RASSF1A) in cardiac inflammation. Our results revealed that genetic inhibition of RASSF1A in cardiomyocytes affords cardioprotection, whereas myeloid-specific deletion of RASSF1A exacerbates inflammation and injury caused by I/R in mice. Cell-based studies revealed that RASSF1A negatively regulates NF-κB and thereby attenuates inflammatory cytokine expression. These findings indicate that myeloid RASSF1A antagonizes I/R-induced myocardial inflammation and suggest that RASSF1A may be a promising target in immunomodulatory therapy for the management of acute heart injury.


Subject(s)
Inflammation/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cells, Cultured , Male , Mice , Mice, Knockout , Myocardial Infarction/pathology , Myocardium/pathology , RAW 264.7 Cells , Tumor Suppressor Proteins/deficiency
14.
Circ Res ; 124(9): 1360-1371, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30786833

ABSTRACT

RATIONALE: Diabetic patients develop cardiomyopathy characterized by hypertrophy, diastolic dysfunction, and intracellular lipid accumulation, termed lipotoxicity. Diabetic hearts utilize fatty acids as a major energy source, which produces high levels of oxidative stress, thereby inducing mitochondrial dysfunction. OBJECTIVE: To elucidate how mitochondrial function is regulated in diabetic cardiomyopathy. METHODS AND RESULTS: Mice were fed either a normal diet or high-fat diet (HFD, 60 kcal % fat). Although autophagic flux was activated by HFD consumption, peaking at 6 weeks ( P<0.05), it was attenuated thereafter. Mitophagy, evaluated with Mito-Keima, was increased after 3 weeks of HFD feeding (mitophagy area: 8.3% per cell with normal diet and 12.4% with HFD) and continued to increase even after 2 months ( P<0.05). By isolating adult cardiomyocytes from GFP-LC3 mice fed HFD, we confirmed that mitochondria were sequestrated by LC3-positive autophagosomes during mitophagy. In wild-type mice, cardiac hypertrophy, diastolic dysfunction (end diastolic pressure-volume relationship =0.051±0.009 in normal diet and 0.11±0.004 in HFD) and lipid accumulation occurred within 2 months of HFD feeding ( P<0.05). Deletion of atg7 impaired mitophagy, increased lipid accumulation, exacerbated diastolic dysfunction (end diastolic pressure-volume relationship =0.11±0.004 in wild type and 0.152±0.019 in atg7 cKO; P<0.05) and induced systolic dysfunction (end systolic pressure-volume relationship =24.86±2.46 in wild type and 15.93±1.76 in atg7 cKO; P<0.05) during HFD feeding. Deletion of Parkin partially inhibited mitophagy, increased lipid accumulation and exacerbated diastolic dysfunction (end diastolic pressure-volume relationship =0.124±0.005 in wild type and 0.176±0.018 in Parkin KO, P<0.05) in response to HFD feeding. Injection of TB1 (Tat-Beclin1) activated mitophagy, attenuated mitochondrial dysfunction, decreased lipid accumulation, and protected against cardiac diastolic dysfunction (end diastolic pressure-volume relationship =0.110±0.009 in Control peptide and 0.078±0.015 in TB1, P<0.05) during HFD feeding. CONCLUSIONS: Mitophagy serves as an essential quality control mechanism for mitochondria in the heart during HFD consumption. Impairment of mitophagy induces mitochondrial dysfunction and lipid accumulation, thereby exacerbating diabetic cardiomyopathy. Conversely, activation of mitophagy protects against HFD-induced diabetic cardiomyopathy.


Subject(s)
Cardiomegaly/physiopathology , Diabetic Cardiomyopathies/physiopathology , Diet, High-Fat/adverse effects , Heart/physiopathology , Mitophagy , Animals , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Cardiomegaly/etiology , Cardiomegaly/genetics , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/genetics , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/metabolism
15.
J Biol Chem ; 294(10): 3603-3617, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30635403

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of death globally, and heart failure is a major component of CVD-related morbidity and mortality. The development of cardiac hypertrophy in response to hemodynamic overload is initially considered to be beneficial; however, this adaptive response is limited and, in the presence of prolonged stress, will transition to heart failure. Yes-associated protein (YAP), the central downstream effector of the Hippo signaling pathway, regulates proliferation and survival in mammalian cells. Our previous work demonstrated that cardiac-specific loss of YAP leads to increased cardiomyocyte (CM) apoptosis and impaired CM hypertrophy during chronic myocardial infarction (MI) in the mouse heart. Because of its documented cardioprotective effects, we sought to determine the importance of YAP in response to acute pressure overload (PO). Our results indicate that endogenous YAP is activated in the heart during acute PO. YAP activation that depended upon RhoA was also observed in CMs subjected to cyclic stretch. To examine the function of endogenous YAP during acute PO, Yap+/flox;Creα-MHC (YAP-CHKO) and Yap+/flox mice were subjected to transverse aortic constriction (TAC). We found that YAP-CHKO mice had attenuated cardiac hypertrophy and significant increases in CM apoptosis and fibrosis that correlated with worsened cardiac function after 1 week of TAC. Loss of CM YAP also impaired activation of the cardioprotective kinase Akt, which may underlie the YAP-CHKO phenotype. Together, these data indicate a prohypertrophic, prosurvival function of endogenous YAP and suggest a critical role for CM YAP in the adaptive response to acute PO.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cardiomegaly/metabolism , Phosphoproteins/metabolism , Pressure , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis , Cardiomegaly/etiology , Cardiomegaly/pathology , Cell Cycle , Cell Cycle Proteins , Down-Regulation/genetics , Fibrosis , Gene Knockout Techniques , Heterozygote , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , PTEN Phosphohydrolase/metabolism , Phosphoproteins/deficiency , Phosphoproteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , YAP-Signaling Proteins , rhoA GTP-Binding Protein/metabolism
16.
Circ Res ; 124(2): 292-305, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30582455

ABSTRACT

RATIONALE: The Hippo pathway plays an important role in determining organ size through regulation of cell proliferation and apoptosis. Hippo inactivation and consequent activation of YAP (Yes-associated protein), a transcription cofactor, have been proposed as a strategy to promote myocardial regeneration after myocardial infarction. However, the long-term effects of Hippo deficiency on cardiac function under stress remain unknown. OBJECTIVE: We investigated the long-term effect of Hippo deficiency on cardiac function in the presence of pressure overload (PO). METHODS AND RESULTS: We used mice with cardiac-specific homozygous knockout of WW45 (WW45cKO), in which activation of Mst1 (Mammalian sterile 20-like 1) and Lats2 (large tumor suppressor kinase 2), the upstream kinases of the Hippo pathway, is effectively suppressed because of the absence of the scaffolding protein. We used male mice at 3 to 4 month of age in all animal experiments. We subjected WW45cKO mice to transverse aortic constriction for up to 12 weeks. WW45cKO mice exhibited higher levels of nuclear YAP in cardiomyocytes during PO. Unexpectedly, the progression of cardiac dysfunction induced by PO was exacerbated in WW45cKO mice, despite decreased apoptosis and activated cardiomyocyte cell cycle reentry. WW45cKO mice exhibited cardiomyocyte sarcomere disarray and upregulation of TEAD1 (transcriptional enhancer factor) target genes involved in cardiomyocyte dedifferentiation during PO. Genetic and pharmacological inactivation of the YAP-TEAD1 pathway reduced the PO-induced cardiac dysfunction in WW45cKO mice and attenuated cardiomyocyte dedifferentiation. Furthermore, the YAP-TEAD1 pathway upregulated OSM (oncostatin M) and OSM receptors, which played an essential role in mediating cardiomyocyte dedifferentiation. OSM also upregulated YAP and TEAD1 and promoted cardiomyocyte dedifferentiation, indicating the existence of a positive feedback mechanism consisting of YAP, TEAD1, and OSM. CONCLUSIONS: Although activation of YAP promotes cardiomyocyte regeneration after cardiac injury, it induces cardiomyocyte dedifferentiation and heart failure in the long-term in the presence of PO through activation of the YAP-TEAD1-OSM positive feedback mechanism.


Subject(s)
Cell Cycle Proteins/deficiency , Cell Dedifferentiation , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Function, Left , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis , Cell Cycle , Cell Cycle Proteins/genetics , Cells, Cultured , DNA-Binding Proteins/metabolism , Disease Models, Animal , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Hippo Signaling Pathway , Male , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology , Oncostatin M/metabolism , Phosphoproteins/metabolism , Rats, Wistar , Signal Transduction , TEA Domain Transcription Factors , Transcription Factors/metabolism , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , YAP-Signaling Proteins
17.
Biomed Res Int ; 2018: 3194917, 2018.
Article in English | MEDLINE | ID: mdl-29487866

ABSTRACT

Skeletal muscle atrophy is induced by an imbalance between protein synthesis and degradation. Our previous studies reported that angiotensin II (AII) directly induced muscle atrophy in mice. This study investigated the role of NAD(P)H oxidase 2 (Nox2) activation by AII in the induction of skeletal muscle atrophy. For 4 weeks, either saline (vehicle: V) or AII (1000 ng kg-1 min-1) was infused into male wild-type (WT) and Nox2 knockout (KO) mice via osmotic minipumps. Experiments were performed in the following 4 groups: WT + V, KO + V, WT + AII, and KO + AII. Body weight, muscle weight, and myocyte cross-sectional area were significantly decreased in WT + AII compared to WT + V mice, and these changes were not observed in KO + AII mice. Akt phosphorylation of Ser473 and p70S6K of Thr389 was decreased, gene expression levels of MuRF-1 and atrogin-1 were increased in WT + AII compared to WT + V, and these changes were significantly attenuated in KO + AII mice. The deletion of Nox2 prevented AII-induced skeletal muscle atrophy via improving the balance between protein synthesis and degradation. Therefore, Nox2 may be a therapeutic target for AII-induced skeletal muscle atrophy.


Subject(s)
Angiotensin II/physiology , Muscle, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , NADPH Oxidase 2/metabolism , Animals , Gene Expression/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/metabolism , Muscle, Skeletal/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , SKP Cullin F-Box Protein Ligases/metabolism
18.
J Clin Invest ; 127(8): 2900-2903, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28737514

ABSTRACT

Proteinopathies are characterized by the accumulation of misfolded proteins, which ultimately interfere with normal cell function. While neurological diseases, such as Huntington disease and Alzheimer disease, are well-characterized proteinopathies, cardiac diseases have recently been associated with alterations in proteostasis. In this issue of the JCI, Fang and colleagues demonstrate that mice with cardiac-specific deficiency of the co-chaperone protein BCL2-associated athanogene 3 (BAG3) develop dilated cardiomyopathy that is associated with a destabilization of small HSPs as the result of a disrupted interaction between BAG3 and HSP70. Together, the results of this study suggest that strategies to upregulate BAG3 during cardiac dysfunction may be beneficial.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Animals , Cardiomyopathy, Dilated , HSP70 Heat-Shock Proteins , Heart , Mice
19.
J Mol Cell Cardiol ; 100: 43-53, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27677939

ABSTRACT

A failing heart shows severe energy insufficiency, and it is presumed that this energy shortage plays a critical role in the development of cardiac dysfunction. However, little is known about the mechanisms that cause energy metabolic alterations in the failing heart. Here, we show that the novel RING-finger protein 207 (RNF207), which is specifically expressed in the heart, plays a role in cardiac energy metabolism. Depletion of RNF207 in neonatal rat cardiomyocytes (NRCs) leads to a reduced cellular concentration of adenosine triphosphate (ATP) and mitochondrial dysfunction. Consistent with this result, we observed here that the expression of RNF207 was significantly reduced in mice with common cardiac diseases including heart failure. Intriguingly, proteomic approaches revealed that RNF207 interacts with the voltage-dependent anion channel (VDAC), which is considered to be a key regulator of mitochondria function, as an RNF207-interacting protein. Our findings indicate that RNF207 is involved in ATP production by cardiomyocytes, suggesting that RNF207 plays an important role in the development of heart failure.


Subject(s)
Energy Metabolism , Myocytes, Cardiac/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Animals , Animals, Newborn , Cell Line , Gene Expression , Humans , Mice , Mitochondria, Heart/metabolism , Organ Specificity/genetics , Protein Binding , Protein Interaction Domains and Motifs , Rats , Stress, Physiological , Ubiquitination , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism
20.
Cardiovasc Res ; 111(4): 338-47, 2016 09.
Article in English | MEDLINE | ID: mdl-27450980

ABSTRACT

AIMS: Exercise capacity is reduced in heart failure (HF) patients, due mostly to skeletal muscle abnormalities including impaired energy metabolism, mitochondrial dysfunction, fibre type transition, and atrophy. Glucagon-like peptide-1 (GLP-1) has been shown to improve exercise capacity in HF patients. We investigated the effects of the administration of a dipeptidyl peptidase (DPP)-4 inhibitor on the exercise capacity and skeletal muscle abnormalities in an HF mouse model after myocardial infarction (MI). METHODS AND RESULTS: MI was created in male C57BL/6J mice by ligating the left coronary artery, and a sham operation was performed in other mice. The mice were then divided into two groups according to the treatment with or without a DPP-4 inhibitor, MK-0626 [1 mg/kg body weight (BW)/day] provided in the diet. Four weeks later, the exercise capacity evaluated by treadmill test was revealed to be limited in the MI mice, and it was ameliorated in the MI + MK-0626 group without affecting the infarct size or cardiac function. The citrate synthase activity, mitochondrial oxidative phosphorylation capacity, supercomplex formation, and their quantity were reduced in the skeletal muscle from the MI mice, and these decreases were normalized in the MI + MK-0626 group, in association with the improvement of mitochondrial biogenesis. Immunohistochemical staining also revealed that a shift toward the fast-twitch fibre type in the MI mice was also reversed by MK-0626. Favourable effects of MK-0626 were significantly inhibited by treatment of GLP-1 antagonist, Exendin-(9-39) (150 pmol/kg BW/min, subcutaneous osmotic pumps) in MI + MK-0626 mice. Similarly, exercise capacity and mitochondrial function were significantly improved by treatment of GLP-1 agonist, Exendin-4 (1 nmol/kg/BW/h, subcutaneous osmotic pumps). CONCLUSIONS: A DPP-4 inhibitor may be a novel therapeutic agent against the exercise intolerance seen in HF patients by improving the mitochondrial biogenesis in their skeletal muscle.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Mitochondria/drug effects , Muscle, Skeletal/drug effects , Triazoles/therapeutic use , Animals , Disease Models, Animal , Exenatide , Glucagon-Like Peptide 1/metabolism , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/physiopathology , Organelle Biogenesis , Peptides/therapeutic use , Venoms/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...