Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Sci Vitaminol (Tokyo) ; 68(1): 65-72, 2022.
Article in English | MEDLINE | ID: mdl-35228497

ABSTRACT

Vitamin D is a fat-soluble molecule, well known for its role in regulating calcium homeostasis in bone. It has become increasingly clear that it also has important effects in many other organs, including the skeletal muscle. In order to gain insight into the role of vitamin D in the skeletal muscle, we performed microarray analysis using C2C12 myoblasts treated with 1,25-dihydroxyvitamin D (1,25(OH)2D), active form of vitamin D. We found multiple genes upregulated by 1,25(OH)2D. Some of them, i.e., vitamin D receptor (Vdr), diacylglycerol O-acyltransferase (Dgat1 and Dgat2, the rate limiting steps of triacylglycerol acylation), and vascular endothelial growth factor A (Vegfa), were previously reported to be upregulated by 1,25(OH)2D in C2C12 cells. RT-qPCR analysis confirmed increased mRNA levels of Rarres2, Dio2, Tgm2, Lpl, Mdfi, Igfbp3, Dgat1, Crabp2, Gadd45a, Vagfa, Dgat2, C3, Ldhb, Cebpa, Igfbp5, Mrc2, Vdr. Thus, many genes, including lipid metabolism genes as well as genes related to muscle functions, appear to be upregulated by 1,25(OH)2D in muscle cells.


Subject(s)
Vascular Endothelial Growth Factor A , Vitamin D , Gene Expression , Lipid Metabolism/genetics , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vitamin D/metabolism , Vitamin D/pharmacology , Vitamins
2.
FASEB J ; 36(2): e22152, 2022 02.
Article in English | MEDLINE | ID: mdl-35061305

ABSTRACT

Catabolic conditions, such as starvation, inactivity, and cancer cachexia, induce Forkhead box O (FOXO) transcription factor(s) expression and severe muscle atrophy via the induction of ubiquitin-proteasome system-mediated muscle proteolysis, resulting in frailty and poor quality of life. Although FOXOs are clearly essential for the induction of muscle atrophy, it is unclear whether there are other factors involved in the FOXO-mediated transcriptional regulation. As such, we identified FOXO-CCAAT/enhancer-binding protein δ (C/EBPδ) signaling pathway as a novel proteolytic pathway. By comparing the gene expression profiles of FOXO1-transgenic (gain-of-function model) and FOXO1,3a,4-/- (loss-of-function model) mice, we identified several novel FOXO1-target genes in skeletal muscle including Redd1, Sestrin1, Castor2, Chac1, Depp1, Lat3, as well as C/EBPδ. During starvation, C/EBPδ abundance was increased in a FOXOs-dependent manner. Notably, knockdown of C/EBPδ prevented the induction of the ubiquitin-proteasome system and decrease of myofibers in FOXO1-activated myotubes. Conversely, C/EBPδ overexpression in primary myotubes induced myotube atrophy. Furthermore, we demonstrated that FOXO1 enhances the promoter activity of target genes in cooperation with C/EBPδ and ATF4. This research comprehensively identifies novel FOXO1 target genes in skeletal muscle and clarifies the pathophysiological role of FOXO1, a master regulator of skeletal muscle atrophy.


Subject(s)
Activating Transcription Factor 4/metabolism , CCAAT-Enhancer-Binding Protein-delta/metabolism , Fasting/metabolism , Forkhead Box Protein O1/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Transcription, Genetic/physiology , Animals , Cell Line , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Signal Transduction/physiology , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...