Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Vis Exp ; (186)2022 08 23.
Article in English | MEDLINE | ID: mdl-36094267

ABSTRACT

Since brain functions are under the continuous influence of the signals derived from peripheral tissues, it is critical to elucidate how glial cells in the brain sense various biological conditions in the periphery and transmit the signals to neurons. Microglia, immune cells in the brain, are involved in synaptic development and plasticity. Therefore, the contribution of microglia to neural circuit construction in response to the internal state of the body should be tested critically by intravital imaging of the relationship between microglial dynamics and neuronal activity. Here, we describe a technique for the simultaneous imaging of microglial dynamics and neuronal activity in awake mice. Adeno-associated virus encoding R-CaMP, a gene-encoded calcium indicator of red fluorescence protein, was injected into layer 2/3 of the primary visual cortex in CX3CR1-EGFP transgenic mice expressing EGFP in microglia. After viral injection, a cranial window was installed onto the brain surface of the injected region. In vivo two-photon imaging in awake mice 4 weeks after the surgery demonstrated that neural activity and microglial dynamics could be recorded simultaneously at the sub-second temporal resolution. This technique can uncover the coordination between microglial dynamics and neuronal activity, with the former responding to peripheral immunological states and the latter encoding the internal brain states.


Subject(s)
Microglia , Wakefulness , Animals , Brain/diagnostic imaging , Mice , Mice, Transgenic , Neurons/physiology
2.
Org Lett ; 23(11): 4168-4172, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34014099

ABSTRACT

An umpolung reaction with α-hydrazonoesters was investigated, and it was found that α-N,N-dialkylaminoamides could be directly synthesized in yields up to 92% via a concomitant rearrangement of dialkylamino groups. As an application, a short synthesis of an inhibitor of glycine type-1-transporter was accomplished via subsequent functional group transformations in 28% overall yield.

3.
Int J Psychophysiol ; 145: 5-14, 2019 11.
Article in English | MEDLINE | ID: mdl-30831138

ABSTRACT

Mismatch negativity (MMN) reduction is one of the most robust findings among several neurophysiological and neurocognitive measures in patients with schizophrenia. MMN is a promising biomarker for schizophrenia because of the following properties: 1) its relationship with early psychosis, including clinical high-risk (CHR); 2) its relationship with the functional abilities of patients; and 3) its translatability into basic research using animal models. Specifically, the utility of the passive auditory oddball paradigm that does not require subjects to make behavioral responses enables identical physiological activities to be obtained from both experimental animals and patients. This advantage has contributed to clarifying the generating mechanism of MMN in various animal studies. We reviewed clinical reports focused on early psychosis; specifically differential effects of deviance type and relationships to clinical and functional outcome. For the utility of MMN as a tool for translational research, we next reviewed recent MMN studies in rodents and nonhuman primates (NHP) as well as studies using intracranial recordings in humans, a rare opportunity to detect neural signals in vivo in humans. Neural computations of MMN, such as adaptation, deviance detection, and predictive coding, have been recent topics for understanding MMN generating mechanisms. Finally, several significant research questions were provided for future directions. MMN research could contribute to innovative, novel, therapeutic strategies in the future by becoming a bridge between basic and clinical research.


Subject(s)
Auditory Cortex/physiopathology , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology , Animals , Disease Models, Animal , Electroencephalography , Humans , Translational Research, Biomedical
4.
Materials (Basel) ; 11(9)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30200462

ABSTRACT

Molybdenum-doped zirconium tungstate (ZrW2-xMoxO8) has been widely studied because of its large isotropic coefficient of negative thermal expansion (NTE). However, low density and poor sinterability limit its production and application. In this study, relative density greater than 90% single-phase ZrW2-xMoxO8 (0.0 ≤ x ≤ 1.0) sintered bodies were fabricated by spark plasma sintering (500⁻600 °C for 10 min) using ZrW2-xMoxO7(OH)2·2H2O precursor powders as the starting material. High-temperature X-ray diffraction and thermomechanical analysis were used to investigate the change in the order⁻disorder phase transition temperature of the sintered materials; it gradually dropped from 170 °C at x = 0.0 to 78 °C at x = 0.5, and then to below room temperature at x ≥ 0.7. In addition, all sintered bodies exhibited NTE behavior. The NTE coefficient was controllable by changing the x value as follows: from -7.85 × 10-6 °C-1 (x = 0) to -9.01 × 10-6 °C-1 (x = 0.6) and from -3.22 × 10-6 °C-1 (x = 0) to -2.50 × 10-6 °C-1 (x = 1.0) before and after the phase transition, respectively. Rietveld structure refinement results indicate that the change in the NTE coefficient can be straightforwardly traced to the thermodynamic instability of the terminal oxygen atoms, which only have one coordination.

5.
eNeuro ; 5(1)2018.
Article in English | MEDLINE | ID: mdl-29445765

ABSTRACT

Catecholaminergic (dopamine and norepinephrine) projections to the cortex play an important role in cognitive functions and dysfunctions including learning, addiction, and mental disorders. While dynamics of glutamatergic synapses have been well studied in such contexts, little is known regarding catecholaminergic projections, owing to lack of robust methods. Here we report a system to monitor catecholaminergic projections in vivo over the timeframes that such events occur. Green fluorescent protein (GFP) expression driven by tyrosine hydroxylase promoter in a transgenic mouse line enabled us to perform two-photon imaging of cortical catecholaminergic projections through a cranial window. Repetitive imaging of the same axons over 24 h revealed the highly dynamic nature of catecholaminergic boutons. Surprisingly, administration of single high dose methamphetamine (MAP) induced a transient increase in bouton volumes. This new method opens avenues for longitudinal in vivo evaluation of structural changes at single release sites of catecholamines in association with physiology and pathology of cortical functions.


Subject(s)
Dopamine/metabolism , Methamphetamine/administration & dosage , Neocortex/drug effects , Neocortex/physiology , Presynaptic Terminals/drug effects , Presynaptic Terminals/physiology , Animals , Brain/drug effects , Brain/physiology , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton/methods , Neural Pathways/drug effects , Neural Pathways/physiology
6.
Inorg Chem ; 56(13): 7404-7415, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28621934

ABSTRACT

A quinoline-based heptadentate ligand, N,N,N',N'-tetrakis(2-quinolylmethyl)-3-oxa-1,5-pentanediamine (TQOPEN), exhibits a fluorescence increase (ICd/I0 = 25, ϕCd = 0.017) at 428 nm upon addition of 1 equiv of Cd2+. In contrast, 1 equiv of Zn2+ induces a negligible fluorescence change due to weak interaction (IZn/I0 = 2.5, IZn/ICd = 10%). In comparison with TQOPEN, the thia and aza derivatives TQSPEN and TQNPEN exhibit improved Cd2+/Zn2+ selectivity and higher Cd2+-binding affinity, respectively. The solid-state structures of mononuclear Cd2+ and hydroxide-bridged dinuclear Zn2+ complexes of TQOPEN were elucidated by X-ray crystallography. Although the crystal structure of the TQOPEN-Cd2+ complex exhibits a six-coordinate metal center, in which one quinoline weakly interacts with the Cd center (Cd···Nquinoline = 3.303(3) Å), a 1H NMR study at 233 K suggests that all quinolines interact with the Cd center to form a symmetrical seven-coordinate structure in solution. Theoretical calculations (TDDFT) support the flexible coordination environment around the Cd center, leading to intramolecular excimer formation with two quinoline moieties in the excited state. The importance of a heptadentate structure was further demonstrated by the lack of Cd2+ specificity with hexadentate ligands TriQOPEN (N,N,N'-tris(2-quinolylmethyl)-3-oxa-1,5-pentanediamine) and TQCPEN (N,N,N',N'-tetrakis(2-quinolylmethyl)-1,5-pentanediamine).

SELECTION OF CITATIONS
SEARCH DETAIL