Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Inflamm Bowel Dis ; 29(2): 274-285, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36206201

ABSTRACT

BACKGROUND: Crohn's disease is a lifelong disease characterized by chronic inflammation of the gastrointestinal tract. Defining the cellular and transcriptional composition of the mucosa at different stages of disease progression is needed for personalized therapy in Crohn's. METHODS: Ileal biopsies were obtained from (1) control subjects (n = 6), (2) treatment-naïve patients (n = 7), and (3) established (n = 14) Crohn's patients along with remission (n = 3) and refractory (n = 11) treatment groups. The biopsies processed using 10x Genomics single cell 5' yielded 139 906 cells. Gene expression count matrices of all samples were analyzed by reciprocal principal component integration, followed by clustering analysis. Manual annotations of the clusters were performed using canonical gene markers. Cell type proportions, differential expression analysis, and gene ontology enrichment were carried out for each cell type. RESULTS: We identified 3 cellular compartments with 9 epithelial, 1 stromal, and 5 immune cell subtypes. We observed differences in the cellular composition between control, treatment-naïve, and established groups, with the significant changes in the epithelial subtypes of the treatment-naïve patients, including microfold, tuft, goblet, enterocyte,s and BEST4+ cells. Surprisingly, fewer changes in the composition of the immune compartment were observed; however, gene expression in the epithelial and immune compartment was different between Crohn's phenotypes, indicating changes in cellular activity. CONCLUSIONS: Our study identified cellular and transcriptional signatures associated with treatment-naïve Crohn's disease that collectively point to dysfunction of the intestinal barrier with an increase in inflammatory cellular activity. Our analysis also highlights the heterogeneity among patients within the same disease phenotype, shining a new light on personalized treatment responses and strategies.


Subject(s)
Crohn Disease , Humans , Crohn Disease/pathology , Intestinal Mucosa/pathology , Ileum/pathology , Intestines/pathology , Inflammation/pathology
2.
Inflamm Bowel Dis ; 28(2): 151-160, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33904583

ABSTRACT

BACKGROUND: Develop a clinical and biological predictive model for colectomy risk in children newly diagnosed with ulcerative colitis (UC). METHODS: This was a multicenter inception cohort study of children (ages 4-17 years) newly diagnosed with UC treated with standardized initial regimens of mesalamine or corticosteroids (CS) depending upon initial disease severity. Therapy escalation to immunomodulators or infliximab was based on predetermined criteria. Patients were phenotyped by clinical activity per the Pediatric Ulcerative Colitis Activity Index (PUCAI), disease extent, endoscopic/histologic severity, and laboratory markers. In addition, RNA sequencing defined pretreatment rectal gene expression and high density DNA genotyping by the Affymetrix UK Biobank Axiom Array. Coprimary outcomes were colectomy over 3 years and time to colectomy. Generalized linear models, Cox proportional hazards multivariate regression modeling, and Kaplan-Meier plots were used. RESULTS: Four hundred twenty-eight patients (mean age 13 years) started initial theapy with mesalamine (n = 136), oral CS (n = 144), or intravenous CS (n = 148). Twenty-five (6%) underwent colectomy at ≤1 year, 33 (9%) at ≤2 years, and 35 (13%) at ≤3 years. Further, 32/35 patients who had colectomy failed infliximab. An initial PUCAI ≥ 65 was highly associated with colectomy (P = 0.0001). A logistic regression model predicting colectomy using the PUCAI, hemoglobin, and erythrocyte sedimentation rate had a receiver operating characteristic area under the curve of 0.78 (95% confidence interval [0.73, 0.84]). Addition of a pretreatment rectal gene expression panel reflecting activation of the innate immune system and response to external stimuli and bacteria to the clinical model improved the receiver operating characteristic area under the curve to 0.87 (95% confidence interval [0.82, 0.91]). CONCLUSIONS: A small group of children newly diagnosed with severe UC still require colectomy despite current therapies. Our gene signature observations suggest additional targets for management of those patients not responding to current medical therapies.


Subject(s)
Colitis, Ulcerative , Adolescent , Biological Factors/therapeutic use , Child , Child, Preschool , Cohort Studies , Colectomy , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/surgery , Humans , Infliximab/therapeutic use , Mesalamine/therapeutic use , Retrospective Studies , Treatment Outcome
3.
Am J Hum Genet ; 108(9): 1765-1779, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450030

ABSTRACT

An important goal of clinical genomics is to be able to estimate the risk of adverse disease outcomes. Between 5% and 10% of individuals with ulcerative colitis (UC) require colectomy within 5 years of diagnosis, but polygenic risk scores (PRSs) utilizing findings from genome-wide association studies (GWASs) are unable to provide meaningful prediction of this adverse status. By contrast, in Crohn disease, gene expression profiling of GWAS-significant genes does provide some stratification of risk of progression to complicated disease in the form of a transcriptional risk score (TRS). Here, we demonstrate that a measured TRS based on bulk rectal gene expression in the PROTECT inception cohort study has a positive predictive value approaching 50% for colectomy. Single-cell profiling demonstrates that the genes are active in multiple diverse cell types from both the epithelial and immune compartments. Expression quantitative trait locus (QTL) analysis identifies genes with differential effects at baseline and week 52 follow-up, but for the most part, differential expression associated with colectomy risk is independent of local genetic regulation. Nevertheless, a predicted polygenic transcriptional risk score (PPTRS) derived by summation of transcriptome-wide association study (TWAS) effects identifies UC-affected individuals at 5-fold elevated risk of colectomy with data from the UK Biobank population cohort studies, independently replicated in an NIDDK-IBDGC dataset. Prediction of gene expression from relatively small transcriptome datasets can thus be used in conjunction with TWASs for stratification of risk of disease complications.


Subject(s)
Colectomy/statistics & numerical data , Colitis, Ulcerative/surgery , Crohn Disease/surgery , Quantitative Trait Loci , Transcriptome , Biological Specimen Banks , Cohort Studies , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Colon/metabolism , Colon/pathology , Colon/surgery , Crohn Disease/complications , Crohn Disease/diagnosis , Crohn Disease/genetics , Datasets as Topic , Disease Progression , Gene Expression Profiling , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Prognosis , Risk Assessment , United Kingdom
4.
Nat Commun ; 12(1): 2474, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931648

ABSTRACT

As more clinically-relevant genomic features of myeloid malignancies are revealed, it has become clear that targeted clinical genetic testing is inadequate for risk stratification. Here, we develop and validate a clinical transcriptome-based assay for stratification of acute myeloid leukemia (AML). Comparison of ribonucleic acid sequencing (RNA-Seq) to whole genome and exome sequencing reveals that a standalone RNA-Seq assay offers the greatest diagnostic return, enabling identification of expressed gene fusions, single nucleotide and short insertion/deletion variants, and whole-transcriptome expression information. Expression data from 154 AML patients are used to develop a novel AML prognostic score, which is strongly associated with patient outcomes across 620 patients from three independent cohorts, and 42 patients from a prospective cohort. When combined with molecular risk guidelines, the risk score allows for the re-stratification of 22.1 to 25.3% of AML patients from three independent cohorts into correct risk groups. Within the adverse-risk subgroup, we identify a subset of patients characterized by dysregulated integrin signaling and RUNX1 or TP53 mutation. We show that these patients may benefit from therapy with inhibitors of focal adhesion kinase, encoded by PTK2, demonstrating additional utility of transcriptome-based testing for therapy selection in myeloid malignancy.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cohort Studies , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Female , Gene Fusion , Humans , INDEL Mutation , Integrins/genetics , Integrins/metabolism , Leukemia, Myeloid, Acute/genetics , Male , Polymorphism, Single Nucleotide , Prognosis , Prospective Studies , RNA-Seq , Risk Factors , Signal Transduction/genetics , Survival Analysis , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Exome Sequencing , Whole Genome Sequencing
5.
Nat Cell Biol ; 22(5): 526-533, 2020 05.
Article in English | MEDLINE | ID: mdl-32251398

ABSTRACT

Interstitial deletion of the long arm of chromosome 5 (del(5q)) is the most common structural genomic variant in myelodysplastic syndromes (MDS)1. Lenalidomide (LEN) is the treatment of choice for patients with del(5q) MDS, but half of the responding patients become resistant2 within 2 years. TP53 mutations are detected in ~20% of LEN-resistant patients3. Here we show that patients who become resistant to LEN harbour recurrent variants of TP53 or RUNX1. LEN upregulated RUNX1 protein and function in a CRBN- and TP53-dependent manner in del(5q) cells, and mutation or downregulation of RUNX1 rendered cells resistant to LEN. LEN induced megakaryocytic differentiation of del(5q) cells followed by cell death that was dependent on calpain activation and CSNK1A1 degradation4,5. We also identified GATA2 as a LEN-responsive gene that is required for LEN-induced megakaryocyte differentiation. Megakaryocytic gene-promoter analyses suggested that LEN-induced degradation of IKZF1 enables a RUNX1-GATA2 complex to drive megakaryocytic differentiation. Overexpression of GATA2 restored LEN sensitivity in the context of RUNX1 or TP53 mutations by enhancing LEN-induced megakaryocytic differentiation. Screening for mutations that block LEN-induced megakaryocytic differentiation should identify patients who are resistant to LEN.


Subject(s)
Cell Differentiation/drug effects , Cell Differentiation/genetics , Chromosomes, Human, Pair 5/genetics , Lenalidomide/pharmacology , Megakaryocytes/drug effects , Myelodysplastic Syndromes/genetics , Cell Line , Chromosomes, Human, Pair 5/drug effects , Core Binding Factor Alpha 2 Subunit/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , GATA2 Transcription Factor/genetics , HEK293 Cells , Humans , Mutation/drug effects , Mutation/genetics , Tumor Suppressor Protein p53/genetics
6.
Lancet ; 393(10182): 1708-1720, 2019 04 27.
Article in English | MEDLINE | ID: mdl-30935734

ABSTRACT

BACKGROUND: Lack of evidence-based outcomes data leads to uncertainty in developing treatment regimens in children who are newly diagnosed with ulcerative colitis. We hypothesised that pretreatment clinical, transcriptomic, and microbial factors predict disease course. METHODS: In this inception cohort study, we recruited paediatric patients aged 4-17 years with newly diagnosed ulcerative colitis from 29 centres in the USA and Canada. Patients initially received standardised mesalazine or corticosteroids, with pre-established criteria for escalation to immunomodulators (ie, thiopurines) or anti-tumor necrosis factor-α (TNFα) therapy. We used RNA sequencing to define rectal gene expression before treatment, and 16S sequencing to characterise rectal and faecal microbiota. The primary outcome was week 52 corticosteroid-free remission with no therapy beyond mesalazine. We assessed factors associated with the primary outcome using logistic regression models of the per-protocol population. This study is registered with ClinicalTrials.gov, number NCT01536535. FINDINGS: Between July 10, 2012, and April 21, 2015, of 467 patients recruited, 428 started medical therapy, of whom 400 (93%) were evaluable at 52 weeks and 386 (90%) completed the study period with no protocol violations. 150 (38%) of 400 participants achieved week 52 corticosteroid-free remission, of whom 147 (98%) were taking mesalazine and three (2%) were taking no medication. 74 (19%) of 400 were escalated to immunomodulators alone, 123 (31%) anti-TNFα therapy, and 25 (6%) colectomy. Low baseline clinical severity, high baseline haemoglobin, and week 4 clinical remission were associated with achieving week 52 corticosteroid-free remission (n=386, logistic model area under the curve [AUC] 0·70, 95% CI 0·65-0·75; specificity 77%, 95% CI 71-82). Baseline severity and remission by week 4 were validated in an independent cohort of 274 paediatric patients with newly diagnosed ulcerative colitis. After adjusting for clinical predictors, an antimicrobial peptide gene signature (odds ratio [OR] 0·57, 95% CI 0·39-0·81; p=0·002) and abundance of Ruminococcaceae (OR 1·43, 1·02-2·00; p=0·04), and Sutterella (OR 0·81, 0·65-1·00; p=0·05) were independently associated with week 52 corticosteroid-free remission. INTERPRETATION: Our findings support the utility of initial clinical activity and treatment response by 4 weeks to predict week 52 corticosteroid-free remission with mesalazine alone in children who are newly diagnosed with ulcerative colitis. The development of personalised clinical and biological signatures holds the promise of informing ulcerative colitis therapeutic decisions. FUNDING: US National Institutes of Health.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Colitis, Ulcerative/drug therapy , Mesalamine/therapeutic use , Adolescent , Biomarkers/metabolism , Child , Child, Preschool , Cohort Studies , Female , Hospitalization/statistics & numerical data , Humans , Male , Treatment Outcome
7.
Gastroenterology ; 156(8): 2254-2265.e3, 2019 06.
Article in English | MEDLINE | ID: mdl-30779925

ABSTRACT

BACKGROUND & AIMS: Crohn's disease is a relapsing and remitting inflammatory disorder with a variable clinical course. Although most patients present with an inflammatory phenotype (B1), approximately 20% of patients rapidly progress to complicated disease, which includes stricturing (B2), within 5 years. We analyzed DNA methylation patterns in blood samples of pediatric patients with Crohn's disease at diagnosis and later time points to identify changes that associate with and might contribute to disease development and progression. METHODS: We obtained blood samples from 164 pediatric patients (1-17 years old) with Crohn's disease (B1 or B2) who participated in a North American study and were followed for 5 years. Participants without intestinal inflammation or symptoms served as controls (n = 74). DNA methylation patterns were analyzed in samples collected at time of diagnosis and 1-3 years later at approximately 850,000 sites. We used genetic association and the concept of Mendelian randomization to identify changes in DNA methylation patterns that might contribute to the development of or result from Crohn's disease. RESULTS: We identified 1189 5'-cytosine-phosphate-guanosine-3' (CpG) sites that were differentially methylated between patients with Crohn's disease (at diagnosis) and controls. Methylation changes at these sites correlated with plasma levels of C-reactive protein. A comparison of methylation profiles of DNA collected at diagnosis of Crohn's disease vs during the follow-up period showed that, during treatment, alterations identified in methylation profiles at the time of diagnosis of Crohn's disease more closely resembled patterns observed in controls, irrespective of disease progression to B2. We identified methylation changes at 3 CpG sites that might contribute to the development of Crohn's disease. Most CpG methylation changes associated with Crohn's disease disappeared with treatment of inflammation and might be a result of Crohn's disease. CONCLUSIONS: Methylation patterns observed in blood samples from patients with Crohn's disease accompany acute inflammation; with treatment, these change to resemble methylation patterns observed in patients without intestinal inflammation. These findings indicate that Crohn's disease-associated patterns of DNA methylation observed in blood samples are a result of the inflammatory features of the disease and are less likely to contribute to disease development or progression.


Subject(s)
Crohn Disease/genetics , DNA Methylation/genetics , Gene Expression Regulation/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis/methods , Adolescent , Age Factors , Case-Control Studies , Child , Child, Preschool , Crohn Disease/blood , Disease Progression , Female , Follow-Up Studies , Genotype , Humans , Infant , Inflammation/genetics , Male , North America , Risk Assessment , Severity of Illness Index , Sex Factors
8.
Nat Commun ; 10(1): 38, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604764

ABSTRACT

Molecular mechanisms driving disease course and response to therapy in ulcerative colitis (UC) are not well understood. Here, we use RNAseq to define pre-treatment rectal gene expression, and fecal microbiota profiles, in 206 pediatric UC patients receiving standardised therapy. We validate our key findings in adult and paediatric UC cohorts of 408 participants. We observe a marked suppression of mitochondrial genes and function across cohorts in active UC, and that increasing disease severity is notable for enrichment of adenoma/adenocarcinoma and innate immune genes. A subset of severity genes improves prediction of corticosteroid-induced remission in the discovery cohort; this gene signature is also associated with response to anti-TNFα and anti-α4ß7 integrin in adults. The severity and therapeutic response gene signatures were in turn associated with shifts in microbes previously implicated in mucosal homeostasis. Our data provide insights into UC pathogenesis, and may prioritise future therapies for nonresponders to current approaches.


Subject(s)
Colitis, Ulcerative/genetics , Genes, Mitochondrial/genetics , Intestinal Mucosa/metabolism , Mitochondrial Diseases/genetics , Transcriptome/genetics , Adolescent , Adult , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Child , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Feces/microbiology , Female , Gene Expression Profiling , Glucocorticoids/therapeutic use , Humans , Integrins/antagonists & inhibitors , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mesalamine/therapeutic use , Microbiota , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/microbiology , Mitochondrial Diseases/pathology , Precision Medicine/methods , Prospective Studies , Rectum/metabolism , Rectum/microbiology , Rectum/pathology , Remission Induction/methods , Sequence Analysis, RNA , Severity of Illness Index , Treatment Outcome , Tumor Necrosis Factor-alpha/antagonists & inhibitors
9.
Genome Med ; 10(1): 48, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29950172

ABSTRACT

BACKGROUND: The genetic and immunological factors that contribute to differences in susceptibility and progression between sub-types of inflammatory and autoimmune diseases continue to be elucidated. Inflammatory bowel disease and juvenile idiopathic arthritis are both clinically heterogeneous and known to be due in part to abnormal regulation of gene activity in diverse immune cell types. Comparative genomic analysis of these conditions is expected to reveal differences in underlying genetic mechanisms of disease. METHODS: We performed RNA-Seq on whole blood samples from 202 patients with oligoarticular, polyarticular, or systemic juvenile idiopathic arthritis, or with Crohn's disease or ulcerative colitis, as well as healthy controls, to characterize differences in gene expression. Gene ontology analysis combined with Blood Transcript Module and Blood Informative Transcript analysis was used to infer immunological differences. Comparative expression quantitative trait locus (eQTL) analysis was used to quantify disease-specific regulation of transcript abundance. RESULTS: A pattern of differentially expressed genes and pathways reveals a gradient of disease spanning from healthy controls to oligoarticular, polyarticular, and systemic juvenile idiopathic arthritis (JIA); Crohn's disease; and ulcerative colitis. Transcriptional risk scores also provide good discrimination of controls, JIA, and IBD. Most eQTL are found to have similar effects across disease sub-types, but we also identify disease-specific eQTL at loci associated with disease by GWAS. CONCLUSION: JIA and IBD are characterized by divergent peripheral blood transcriptomes, the genetic regulation of which displays limited disease specificity, implying that disease-specific genetic influences are largely independent of, or downstream of, eQTL effects.


Subject(s)
Arthritis, Juvenile/genetics , Gene Expression Regulation , Inflammatory Bowel Diseases/genetics , Adolescent , Arthritis, Juvenile/blood , Case-Control Studies , Child , Child, Preschool , Cluster Analysis , Genetic Heterogeneity , Genome-Wide Association Study , Humans , Infant , Inflammatory Bowel Diseases/blood , Quantitative Trait Loci/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors , Transcription, Genetic , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...