Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675456

ABSTRACT

Gardenia is both a food and medicine plant. It is widely used for cardiovascular protection, and its main bioactive ingredient is crocetin. This study aims to observe the therapeutic effects of crocetin on chronic heart failure in rats induced by various etiologies. It further compares the efficacy differences between preventative and treatment administration, varying dosages, and treatment durations, to provide improved guidance for medication in heart failure rats and determine which categories of chronic heart failure rats might benefit most from crocetin. Chronic heart failure models induced by abdominal aorta constriction, renal hypertension, and coronary artery ligation were constructed. By examining cardiac function, blood biochemistry, and histopathology, the study assessed the preventive and therapeutic effects of crocetin on load-induced and myocardial ischemia-induced heart failure. The results showed that in all three models, both treatment and preventative administration of crocetin significantly improved chronic heart failure in rats, especially in preventative administration. The results indicate crocetin may be beneficial for improving symptoms and functional capacity in rats with heart failure. Furthermore, long-term administration was more effective than short-term administration across all three rat models, with therapeutic onset observed over 6 weeks.

2.
J Chromatogr A ; 1715: 464613, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38184988

ABSTRACT

Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) technology has emerged as a crucial tool for identifying components in traditional Chinese medicine (TCM). However, the characterization of the chemical profiles of TCM prescriptions (TCMPs) which often consist of multiple herbal medicines and contain diverse structural types, presents several challenges, such as component overlapping and time-consuming. In this study, a novel strategy known as the multi-module structure labelled molecular network (MSLMN), which integrates molecular networking, database annotation, and cluster analysis techniques, has been successfully proposed, which facilitates the identification of chemical constituents by leveraging a high-structural similarity ion list derived from the MSLMN. It has been effectively applied to analyze the chemical profile of Xiaoyao San (XYS), a classical TCMP. Through the MSLMN method, a total of 302 chemical constituents were identified, covering nine structural types in XYS. Furthermore, a validated and quantitative analytical method using UHPLC-QqQ-MS/MS technology was developed for 31 identified chemicals, encompassing all eight herbal medicines present in XYS, and the developed analytical approach was applied to investigate the content distribution across 40 different batches of commercially available XYS. In total, the proposed strategy has practical significance for improving the insight into the chemical profile of XYS and serves as a valuable approach for handling complex system data based on UHPLC-MS, particularly for TCMPs.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Medicine, Chinese Traditional , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry
3.
Food Res Int ; 166: 112589, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36914321

ABSTRACT

Dried ginger, a well-known medicine and food homologous production, has been widely circulated in China with high health benefits and economic value. Currently, there is still a lack of quality assessment on whether dried ginger in China exhibits chemically and biologically distinct properties, which creates a barrier to its quality control in commercial circulation. In this study, the chemical characteristics of 34 batches of common dried ginger samples in China were first explored using non-targeted chemometrics based on the UPLC-Q/TOF-MS analysis, leading to the identification of 35 chemicals that contributed to clustering into two categories, with sulfonated conjugates being the key chemically distinct components. By comparing the samples before and after sulfur-containing treatment and the further synthesis of a key differentiating component of [6]-gingesulfonic acid, it was then demonstrated that sulfur-containing treatment was the primary cause of the formation of sulfonated conjugates, as opposed to regional or environmental factors. Furthermore, the anti-inflammatory efficacy of dried ginger with high presence of sulfonated conjugates was significantly decreased. Consequently, for the first time, UPLC-QqQ-MS/MS was used to develop a targeted quantification method for 10 characteristic chemicals in dried ginger, allowing researchers to quickly determine whether dried ginger has been processed with sulfur and quantitatively evaluate the quality of dried ginger. These results provided an insight into the quality of commercial dried ginger in China and a suggested method for its quality supervision as well.


Subject(s)
Zingiber officinale , Zingiber officinale/chemistry , Tandem Mass Spectrometry , Anti-Inflammatory Agents/pharmacology , China , Sulfur
4.
RSC Adv ; 13(9): 5804-5812, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816071

ABSTRACT

Gingerols, mainly [6]-gingerol (6G), [8]-gingerol (8G), and [10]-gingerol (10G), are the functional and specific pungent phytochemicals in ginger. However, poor oral bioavailability limits their applications owing to extensive metabolism. The present study aims to characterize the cytochrome P450 (CYP) metabolic characteristics of 6G, 8G, and 10G by using pooled human liver microsomes (HLM), different animal liver microsomes, and the expressed CYP enzymes. It is shown that NADPH-dependent oxidation and hydrogenation metabolisms of gingerols are the main metabolic types in HLM. With the increase of the carbon chain, the polarity of gingerols decreases and the formation of hydrogenated metabolites is more efficient (CLint: 1.41 µL min-1 mg-1 for 6G, 7.79 µL min-1 mg-1 for 8G and 14.11 µL min-1 mg-1 for 10G), indicating that the phase I metabolism of gingerols by HLM varied with the chemical structure of the substrate. The phase I metabolism of gingerols revealed considerable species variations, and compared to HLM, novel metabolites such as (3S,5S)-gingerdiols and demethylated metabolites are generated in some animal liver microsomes. The primary enzymes involved in the oxidized and demethylated metabolism of these gingerols are CYP1A2 and CYP2C19, but their affinities for gingerols are not the same. CYP2D6 and CYP2B6 contributed significantly to the formation of (3R,5S)-[8]-gingerdiol and (3R,5S)-[10]-gingerdiol, respectively; however, the enzyme responsible for the production of (3R,5S)-[6]-gingerediol is yet to be identified. Some metabolites in microsomes cannot be detected by the 12 investigated CYP enzymes, which may be related to the combined effects of multiple enzymes in microsomes, the different affinity of mixed liver microsomes and CYP enzymes, gene polymorphisms, etc. Overall, this work provides a deeper knowledge of the influence of CYP metabolism on the gingerols, as well as the mode of action and the possibility for drug-herbal interactions.

SELECTION OF CITATIONS
SEARCH DETAIL