Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Environ Res ; 252(Pt 2): 118908, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38614197

ABSTRACT

Pharmaceuticals and Personal Care Products (PPCPs) are inadvertently released into the aquatic environment, causing detrimental effects on aquatic ecosystem. There is an urgent need of an in-deep investigation on contamination information of PPCPs in aquatic environment as well as the ecological risks to the aquatic ecosystem. This study was carried out in Lipu River basin, China, to investigate the distribution pattern and ecological risks of PPCPs. Results showed that PPCPs pollution is ubiquitous, 29 out of 30 targeted PPCPs were detected in Lipu River. Fourteen PPCPs were detected with a frequency of 100% in all water samples, and ten PPCPs were detected with a frequency of more than 80%. The cumulated PPCPs concentrations ranged from 33.30 ng/L to 99.60 ng/L, with a median value of 47.20 ng/L in Lipu River. Caffeine, flumequine, nifedipine, and lomefloxacin were the predominant PPCPs in study area. Caffeine showed high ecological risk, five and seven individual PPCP showed medium and low ecological risk to algae.

2.
Environ Sci Pollut Res Int ; 31(2): 2891-2906, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38082041

ABSTRACT

Replacing NH3 in NH3-SCR with VOCs provides a new idea for the simultaneous removal of VOCs and NOx, but the technology still has urgent problems such as high cost of catalyst preparation and unsatisfactory catalytic effect in the low-temperature region. In this study, biochar obtained from sewage sludge calcined at different temperatures was used as a carrier, and different Co and Mn injection ratios were selected. Then, a series of sludge-based biochar (SBC) catalysts were prepared by a one-step hydrothermal synthesis method for the simultaneous removal of acetone and NO in a low-temperature photothermal co-catalytic system with acetone replacing NH3. The characterization results show that heat is the main driving force of the reaction system, and the abundance of Co and Mn atoms in high valence states, surface-adsorbed oxygen, and oxygen lattice defects in the catalyst are the most important factors affecting the performance of the catalyst. The performance test results showed that the optimal pyrolysis temperature of sludge was 400 °C, the optimal dosing ratio of Co and Mn was 4:1, and the catalyst achieved 42.98% and 52.41% conversion of acetone and NO, respectively, at 240 °C with UV irradiation. Compared with the pure SBC without catalytic effect, the SBC loaded with Co and Mn gained the ability of simultaneous removal of acetone and NO through the combined effect of multiple factors. The key reaction steps for the catalytic conversion of acetone and NO on the catalyst surface were investigated according to the Mars-van Krevelen (MvK) mechanism, and a possible mechanism was proposed. This study provides a new strategy for the resource utilization of sewage sludge and the preparation of photothermal catalysts for the simultaneous removal of acetone and NO at low cost.


Subject(s)
Acetone , Charcoal , Sewage , Temperature , Catalysis , Oxygen
3.
Environ Sci Pollut Res Int ; 30(57): 119935-119946, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37934405

ABSTRACT

Biochar-supported nano-zero-valent iron (BC-nZVI) composites have been extensively investigated for the treatment of Cr(VI)-containing wastewater. However, the inherent oxygen-containing groups with negative charges on BC exhibit electrostatic repulsion of the electronegative Cr(VI) species, limiting Cr(VI) removal. To overcome this limitation, this study prepared and used amino-modified bamboo-derived BC (AMBBC) as a supporting matrix to synthesize a novel AMBBC-nZVI composite. The amino groups (-NH2) on AMBBC were easily protonated and transformed into positively charged ions (-NH3+), which favored the attraction of Cr(VI) to AMBBC-nZVI, enhancing Cr(VI) removal. The experimental results demonstrated that the Cr(VI) removal efficiency of AMBBC-nZVI was 95.3%, and that of BBC-nZVI was 83.8% under the same conditions. The removal of Cr(VI) by AMBBC-nZVI followed the pseudo-second-order kinetic model and Langmuir isotherm model and was found to be a monolayer chemisorption process. Thermodynamic analysis revealed that the Cr(VI) removal process was spontaneous and endothermic. The mechanism analysis of Cr(VI) removal indicated that under an acidic condition, the -NH3+ groups on AMBBC adsorbed the electronegative Cr(VI) species via electrostatic interaction, promoting the attachment of Cr(VI) on AMBBC-nZVI; the adsorbed Cr(VI) was then reduced to Cr(III) by Fe0 and Fe(II), accompanied by the formation of Fe(III); moreover, AMBBC allowed the electron shuttle of nZVI to reduce Cr(VI); finally, the Cr(III) and Fe(III) species deposited on the surface of AMBBC-nZVI as Cr(III)-Fe(III) hydroxide coprecipitates.


Subject(s)
Iron , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Adsorption , Chromium , Water , Ferric Compounds
4.
Angew Chem Int Ed Engl ; 62(50): e202313868, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37899658

ABSTRACT

Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni-N4 and Fe-N4 pair sites is designed for boosting gas-solid CO2 reduction with H2 O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)-N-C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 µmol g-1 h-1 ), CH4 (135.35 µmol g-1 h-1 ) and CH3 OH (59.81 µmol g-1 h-1 ), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe-N-C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)-N-C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni-N-N-Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.

5.
JACS Au ; 2(8): 1800-1810, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36032530

ABSTRACT

Plasma-catalytic CO2 hydrogenation is a complex chemical process combining plasma-assisted gas-phase and surface reactions. Herein, we investigated CO2 hydrogenation over Pd/ZnO and ZnO in a tubular dielectric barrier discharge (DBD) reactor at ambient pressure. Compared to the CO2 hydrogenation using Plasma Only or Plasma + ZnO, placing Pd/ZnO in the DBD almost doubled the conversion of CO2 (36.7%) and CO yield (35.5%). The reaction pathways in the plasma-enhanced catalytic hydrogenation of CO2 were investigated by in situ Fourier transform infrared (FTIR) spectroscopy using a novel integrated in situ DBD/FTIR gas cell reactor, combined with online mass spectrometry (MS) analysis, kinetic analysis, and emission spectroscopic measurements. In plasma CO2 hydrogenation over Pd/ZnO, the hydrogenation of adsorbed surface CO2 on Pd/ZnO is the dominant reaction route for the enhanced CO2 conversion, which can be ascribed to the generation of a ZnO x overlay as a result of the strong metal-support interactions (SMSI) at the Pd-ZnO interface and the presence of abundant H species at the surface of Pd/ZnO; however, this important surface reaction can be limited in the Plasma + ZnO system due to a lack of active H species present on the ZnO surface and the absence of the SMSI. Instead, CO2 splitting to CO, both in the plasma gas phase and on the surface of ZnO, is believed to make an important contribution to the conversion of CO2 in the Plasma + ZnO system.

6.
Article in English | MEDLINE | ID: mdl-35410068

ABSTRACT

Arsenic is highly toxic and carcinogenic. The aim of the present work is to develop a good remediation technique for arsenic-contaminated soils. Here, a novel remediation technique by coupling electrokinetics (EK) with the permeable reactive barriers (PRB) of Fe/Mn/C-LDH composite was applied for the remediation of arsenic-contaminated soils. The influences of electric field strength, PRB position, moisture content and PRB filler type on the removal rate of arsenic from the contaminated soils were studied. The Fe/Mn/C-LDH filler synthesized by using bamboo as a template retained the porous characteristics of the original bamboo, and the mass percentage of Fe and Mn elements was 37.85%. The setting of PRB of Fe/Mn/C-LDH placed in the middle was a feasible option, with the maximum and average soil leaching toxicity removal rates of 95.71% and 88.03%, respectively. When the electric field strength was 2 V/cm, both the arsenic removal rate and economic aspects were optimal. The maximum and average soil leaching toxicity removal rates were similar to 98.40% and 84.49% of 3 V/cm, respectively. Besides, the soil moisture content had negligible effect on the removal of arsenic but slight effect on leaching toxicity. The best leaching toxicity removal rate was achieved when the soil moisture content was 35%, neither higher nor lower moisture content in the range of 25-45% was conducive to the improvement of leaching toxicity removal rate. The results showed that the EK-PRB technique could effectively remove arsenic from the contaminated soils. Characterizations of Fe/Mn/C-LDH indicated that the electrostatic adsorption, ion exchange, and surface functional group complexation were the primary ways to remove arsenic.


Subject(s)
Arsenic , Environmental Restoration and Remediation , Soil Pollutants , Arsenic/analysis , Kinetics , Soil , Soil Pollutants/analysis
7.
Chemosphere ; 286(Pt 3): 131754, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34399263

ABSTRACT

The problem of deep oxidation of low concentrations of VOCs in industrial tail gas is exceptionally urgent. The preparation of VOCs ozonation catalyst with a high mineralization rate is still a challenge. In this paper, manganese oxide carriers with different morphologies were synthesized by simple methods and used to catalyze ozone mineralization of toluene after loading Pt nanoparticles efficiently. The conversion of toluene over Pt/MnOx-T catalyst was more than 98 % at ambient temperature, and the mineralization rate of toluene was close to 100 % at 70 °C. Through a variety of characterization methods, the strong metal-support interaction (SMSI) between Pt nanoparticles and carriers was successfully constructed. It was found that SMSI successfully optimized the surface oxygen species and oxygen migration ability of the catalyst, and then realized the high degree of mineralization of toluene at low temperature. This paper guides the subsequent development of Pt-Mn catalysts for catalytic organic pollutants ozonation with high activity.


Subject(s)
Ozone , Toluene , Catalysis , Oxidation-Reduction , Oxygen , Temperature
8.
J Colloid Interface Sci ; 608(Pt 3): 3004-3012, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34799044

ABSTRACT

Via various hydrothermal synthetic conditions, controllable synthesis various morphologies of MnOx-TiO2 catalysts for simultaneous removal toluene and NO with free-ammonia under the photothermocatalysis system based on UV light irradiation. The morphologies obtained included 3D hierarchical sheet structure (C sample), 3D hierarchical sheet stacked MnOx-TiO2 microspheres (P sample), and 3D hierarchical sticks stacked MnOx-TiO2 microspheres (N sample). Compared with other samples, N sample exhibited the excellent catalytic activity for the toluene and NO, with the conversion rates of toluene and NO achieved 72% and 91% at 240 °C, respectively. Using a variety of characterization and analysis methods, it was confirmed that the morphology of the catalysts would affect its catalytic performance by affecting the specific surface area, surface-adsorbed oxygen species, oxygen vacancies, the high-valence atomic species and reducibility. This was the reason why the N sample could show remarkable performance. Moreover, this work demonstrated a new strategy for simultaneously removing toluene and NO with free-ammonia under the photothermocatalysis system based on UV light irradiation.


Subject(s)
Ammonia , Toluene , Catalysis , Titanium
9.
Chemosphere ; 279: 130658, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134427

ABSTRACT

In this work, a series of spindle-like CeO2 supports with different contents of surface oxygen vacancies were fabricated by an in-situ atmosphere thermal pyrolysis method. Due to the unique surface physicochemical properties of the modified CeO2 supports, the interaction between Pt and CeO2 can be regulated during the synthesis of the Pt/CeO2 catalyst. The abundant oxygen vacancies on the CeO2 support could preferentially trap Pt2+ ions in solution during the Pt impregnation process and enhance the Pt-CeO2 interaction in the subsequent reduction process, which results in the strongest Pt-O-Ce bonds formed on the PCH catalysts successfully (0.6% Pt loading on the CH support, which generated by thermal pyrolysis of Ce(OH)CO3 under H2 atmosphere). The strong Pt-O-Ce bond would trigger abundant surface oxygen species generated and enhanced the lattice oxygen species transfer from CeO2 supports to Pt nanoparticles. It was crucial to boosting the toluene catalytic activity. Therefore, the PCH catalyst exhibits the highest activity for toluene oxidation (T10 = 120 °C, T50 = 138 °C, and T90 = 150 °C with WHSV = 60,000 mL g-1 h-1) and remarkable durability and water resistance among all catalysts. We also conclude that the Pt-O-Ce bond may be the active site for toluene oxidation by calculating the turnover frequencies (TOFPt-O-Ce) value for all Pt/CeO2 catalysts. Moreover, the DFT calculation indicates that the Pt/CeO2 catalyst with a strong Pt-O-Ce bond possesses the lowest oxygen absorption energy and higher CO tolerance ability, which leads to excellent catalytic performance for toluene and CO catalytic oxidation.


Subject(s)
Cerium , Atmosphere , Catalysis , Pyrolysis , Toluene
10.
Chemosphere ; 262: 127738, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32763575

ABSTRACT

A Pt-Co3O4 catalyst named Pt-Co(OH)2-O was prepared by metal-organic templates (MOTs) conversion and used for catalytic oxidation of toluene. Through the conversion, the morphology of catalysts transformed from rhombic dodecahedron to nanosheet and the coated Pt nanoparticles (NPs) were more exposed. The Binding energy shift in XPS test indicates that the strong metal-support strong interaction (SMSI) has enhanced, and the physicochemical changes caused by it are characterized by other techniques. At the same time, Pt-Co(OH)2-O showed the best catalytic performance (T50 = 157 °C, T90 = 167 °C, Ea = 40.85 kJ mol-1, TOFPt = 2.68 × 10-3 s-1) and good stability. In addition, the in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) studies have shown that because SMSI weakened the Co-O bond, the introduction of Pt NPs can make the migration of oxygen in the catalyst easier. The change of binding energy change and the content of various species in the quasi in situ XPS experiment further confirmed that the Pt-Co(OH)2-O catalyst has stronger SMSI, resulting in its stronger electron transfer ability and oxygen migration ability, which is conducive to catalytic reactions. This work provides new ideas for the development of supported catalysts and provides a theoretical reference for the relevant verification of SMSI.


Subject(s)
Cobalt/chemistry , Metal Nanoparticles/chemistry , Oxides/chemistry , Toluene/chemistry , Catalysis , Environmental Pollutants/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photoelectron Spectroscopy , Platinum/chemistry , Spectroscopy, Fourier Transform Infrared
11.
Chemosphere ; 247: 125860, 2020 May.
Article in English | MEDLINE | ID: mdl-32069710

ABSTRACT

Herein, CeO2 catalysts with nanotube, nanobelt, and wire-in-nanotube morphologies were successfully fabricated by a facile single spinneret electrospinning technique. And catalytic activity of these electrospun CeO2 nanomaterials were evaluated by toluene catalytic combustion reaction. Among the three morphologies of CeO2 catalysts, CeO2 nanobelt (CeO2-NB) presented the best toluene catalytic combustion performance (T90% = 230 °C) at WHSV = 60,000 mL g-1 h-1, also exhibited the lowest activation energy (Ea = 80.2 kJ/mol). Based on the characterization by TEM, XRD, BET, SEM, XPS, Raman spectroscopy, H2-TPR, and O2-TPD results, the high catalytic activity of CeO2-NB catalyst was attributed to its porous nanobelt morphology with larger specific surface area and the abundance of surface oxygen vacancies. Furthermore, the CeO2-NB catalysts presented an excellent durability by longtime on-stream test (as well as presence of 5% vol. water vapor), suggesting its great potential for practical air pollution control application.


Subject(s)
Cerium/chemistry , Nanostructures/chemistry , Toluene/chemistry , Air Pollution/prevention & control , Catalysis , Nanotubes/chemistry , Oxygen/chemistry , Porosity , Volatile Organic Compounds
12.
Inorg Chem ; 59(5): 3062-3071, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32049505

ABSTRACT

Macroscopic Co3O4 hexagonal tubes were successfully synthesized using hollow two-dimensional (2D) MOL (metal-organic layer) single crystals as sacrificial templates. The hollow 2D MOL single crystals were prepared under hydrothermal conditions with acetonitrile (MeCN) as an interference agent. The formation of hollow-structured 2D MOL single crystals was tracked by time-dependent experiments, and two simultaneous paths-namely, the crystal-to-crystal transformation in solution and the dissolution + migration (toward the external surface) of inner crystallites-were identified as playing a key role in the formation of the unique hollow structure. The calculated change in Gibbs free energy (ΔG = -1.18 eV) indicated that the crystal-to-crystal transformation was spontaneous at 393 K. Further addition of MeCN as an interference agent eventually leads to the formation of macroscopic hexagonal tubes. Among all of the as-synthesized Co3O4, Co-MeCN-O with a hexagonal tube morphology exhibited the best catalytic performance in toluene oxidation, it achieved a toluene conversion of 90% (T90) at ∼227 °C (a space velocity of 60 000 mL g-1 h-1) and the activity energy (Ea) is 69.5 kJ mol-1. A series of characterizations were performed to investigate the structure-activity correlation. It was found that there are more structure defects, more adsorbed surface oxygen species, more surface Co3+ species, and higher reducibility at low temperatures on the Co-MeCN-O than on other Co3O4 samples; these factors are responsible for its excellent catalytic performance. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization showed that, when there is no oxygen in the atmosphere, the lattice oxygen may be involved in the activation of toluene, and the gas-phase oxygen replenished by the oxygen vacancies was essential for the total oxidation of toluene on the surface of the Co-MeCN-O catalysts, it also proves the importance of oxygen vacancies. Moreover, for the Co-MeCN-O catalysts, no obvious decrease in catalytic performance was observed after 120 h at 220 °C and it is still stable after cycling tests, which indicates that it exhibits excellent stability for toluene oxidation. This study sheds lights on the controllable synthesis of macroporous-microporous materials in single-crystalline form without an external template, and, thus, it may serve as a reference for future design and synthesis of hollow porous materials with outstanding catalytic performance.

13.
J Hazard Mater ; 386: 121957, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31884368

ABSTRACT

Series of Co3+-rich spinel Co3O4 catalysts were synthesized and evaluated by toluene catalytic oxidation. An outstanding activity was achieved over Co3O4-N utilizing Co(NO3)2·6H2O as precursor (T50 = 211 °C, T90 = 217 °C at conditions: 1000 ppm(v), WHSV = 60 000 mL g-1 h-1). Results of comparative characterizations demonstrated that such excellent performance was mainly attributed to large surface area, high reducibility at low temperature, high abundance of Co3+ ions and structure defects, as well as highly active surface oxygen. The results of in situ DRIFTS revealed that in the air or N2 atmosphere, the by-products were almost the same. The reaction pathway of toluene oxidation can be described as follow: transformation of toluene from benzyl alcohol, benzaldehyde, benzoate, benzene, phenol, benzoquinone, maleic acid and to final products, which were fully confirmed by PTR-TOF-MS. Besides, ring opened by-products, such as acetone, acetic acid, acetaldehyde, etc. were also detected. In this work, the combination of in situ DRIFTS and PTR-TOF-MS provided a promising approach for further understanding of the mechanism of VOCs elimination.

14.
Nanomaterials (Basel) ; 10(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31877630

ABSTRACT

Herein, to investigate the pore effect on toluene catalytic oxidation activity, novel supports for Pt nanoparticles-ZSM-5 foam (ZF) fabricated using polyurethane foam (PUF) templates and pore-modified ZSM-5 foam (ZF-D) treated by acid etching, comparing with conventional ZSM-5 and pore-modified ZSM-5 (ZSM-5-D), were successfully synthesized. Pt nanoparticles were loaded on series ZSM-5 supports by the impregnation method. The Pt loaded on ZF-D (Pt/ZF-D) showed the highest activity of toluene catalytic combustion (i.e., T90 = 158 °C), with extraordinary stability and an anti-coking ability. Based on various catalysts characterizations, the unique macropores of ZF facilitated the process of acid etching as compared to conventional ZSM-5. The mesopores volume of ZF-D significantly increased due to acid etching, which enlarged toluene adsorption capacity and led to a better Pt distribution since some Pt nanoparticles were immobilized into some mesopores. Specifically, the microporous distribution was centered in the range of 0.7-0.8 nm close to the molecular diameter of toluene (ca. 0.67 nm), which was key to the increasing toluene diffusion rate due to pore levitation effect of catalysts and accessibility of metal. Furthermore, the reducibility of Pt nanoparticles was improved on Pt/ZF-D, which enhanced the activity of toluene catalytic oxidation.

15.
J Hazard Mater ; 364: 571-580, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30388641

ABSTRACT

Herein, a series of distinctively monolithic catalysts were first synthesized by decorating leaf-like Co-ZIF-L derivatives on Co2AlO4 coral-like microspheres from CoAl layered double hydroxides (LDHs), which were coated on three-dimensional porous Ni foam. As a proof of concept application, toluene was chosen as a probe molecule to evaluate their catalytic performances over the as-synthesized catalysts. As a result, the L-12 sample derived from Co2AlO4@Co-Co LDHs displayed an excellent catalytic performance, cycling stability and long-term stability for toluene oxidation (T99 = 272 °C, 33 °C lower than that of Co2AlO4 sample), where leaf-like Co-ZIF-L served as a sacrificial template to synthesize Co-Co LDHs. The improved catalytic performance was attributed to its distinctive structure, in which leaf-like Co-ZIF-L derivatives on Co2AlO4 resulted in its higher specific surface area, lower-temperature reducibility, rich surface oxygen vacancy and high valence Co3+ species. This work thus demonstrates a feasible strategy for the design and fabrication of hybrid LDHs/ZIFs-derived composite architectures, which is expected to construct other novel monolithic catalysts with hierarchical structures for other potential applications.

16.
J Environ Sci (China) ; 75: 136-144, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30473278

ABSTRACT

Herein, we reported the synthesis of well-defined Co3O4 nanoarrays (NAs) supported on a monolithic three-dimensional macroporous nickel (Ni) foam substrate for use in high-efficiency CO oxidation. The monolithic Co3O4 NAs catalysts were obtained through a generic hydrothermal synthesis route with subsequent calcination. By controlling the reaction time, solvent polarity and deposition agent, these Co3O4 NAs catalysts exhibited various novel morphologies (single or hybrid arrays), whose physicochemical properties were further characterized by using several analytical techniques. Based on the catalytic and characterization analyses, it was found that the Co3O4 NAs-6 catalyst with nanobrush and nanomace arrays displayed enhanced catalytic activity for CO oxidation, achieving an efficient 100% CO oxidation conversion at a gas hourly space velocity (GHSV) 10,000hr-1 and 150°C with long-term stability. Compared with the other Co3O4 NAs catalysts, it had the highest abundance of surface-adsorbed oxygen species, excellent low-temperature reducibility and was rich in surface-active sites (Co3+/Co2+=1.26).


Subject(s)
Carbon Monoxide/chemistry , Cobalt/chemistry , Models, Chemical , Nickel/chemistry , Oxides/chemistry , Adsorption , Oxidation-Reduction
17.
Nanoscale ; 10(16): 7746-7758, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29658017

ABSTRACT

A generic hydrothermal synthesis route has been successfully designed and utilized to in situ grow highly ordered Co3O4 nanoarray (NA) precursors on Ni substrates, forming a series of Co3O4 nanoarray-based monolithic catalysts with subsequent calcination. The morphology evolution of Co3O4 nanostructures which depends upon the reaction time, with and without CTAB or NH4F is investigated in detail, which is used to further demonstrate the growth mechanism of Co3O4 nanoarrays with different morphologies. CO is chosen as a probe molecule to evaluate the catalytic performance over the synthesized Co-based oxide catalysts, and the effect of morphological transformation on the catalytic activity is further confirmed via using TEM, H2-TPR, XPS, Raman spectroscopy and in situ Raman spectroscopy. As a proof of concept application, core-shell Co3O4 NAs-8 presenting hierarchical nanosheets@nanoneedle arrays with a low density of nanoneedles exhibits the highest catalytic activity and long-term stability due to its low-temperature reducibility, the lattice distortion of the spinel structure and the abundance of surface-adsorbed oxygen (Oads). It is confirmed that CO oxidation on the surface of Co3O4 can proceed through the Langmuir-Hinshelwood mechanism via using in situ Raman spectroscopy. It is expected that the in situ synthesis of well-defined Co3O4 monolithic catalysts can be extended to the development of environmentally-friendly and highly active integral materials for practical industrial catalysis.

18.
Chemistry ; 24(9): 2126-2136, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-28857303

ABSTRACT

We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co3 O4 , NiO, CuO-Cu2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co2+ , Ni2+ , Cu2+ , or Zn2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co2+ , Ni2+ , Cu2+ , and Zn2+ ions, and no hollow structures formed for weak and/or noncomplex Mn2+ and Fe3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co3 O4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention.

19.
J Environ Sci (China) ; 51: 157-164, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28115126

ABSTRACT

Particulate matter (PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health. It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics, especially ultrafine particles (UFP<100nm) and accumulation mode particles (AMP 100-665nm). Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 265°C to investigate PM emission and decay features between 0.03 and 10µm size dimension by electrical low pressure impactor (ELPI) without ventilation. Rapeseed and sunflower produced high PM2.5 around 6.1mg/m3, in comparison with those of soybean and corn (5.87 and 4.65mg/m3, respectively) at peak emission time between 340 and 460sec since heating oil, but with the same level of particle numbers 6-9×105/cm3. Mean values of PM1.0/PM2.5 and PM2.5/PM10 at peak emission time are around 0.51-0.66 and 0.23-0.29. After 15min naturally deposition, decay rates of PM1.0, PM2.5 and PM10 are 13.3%-29.8%, 20.1%-33.9% and 41.2%-54.7%, which manifest that PM1.0 is quite hard to decay than larger particles, PM2.5 and PM10. The majority of the particle emission locates at 43nm with the largest decay rate at 75%, and shifts to a larger size between 137 and 655nm after 15min decay. The decay rates of the particles are sensitive to the oil type.


Subject(s)
Air Pollution, Indoor/analysis , Cooking/methods , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Monitoring , Oils , Particle Size , Ventilation
20.
Huan Jing Ke Xue ; 38(1): 33-40, 2017 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-29965028

ABSTRACT

Studying particle size distribution and dispersion characteristics of cooking oil fume can help to analyze the influence of the particles on indoor air quality and the health of the residents.Electrical low pressure impactor (ELPI) was employed to measure the number and mass concentration of the particles size range of 0.03-10 µm at two different locations in the kitchen space with smoke exhaust on and off,respectively.The cooking particles were mostly located at below 655 nm.The smoke exhaust with open condition could remarkably decrease the kitchen's cooking fume.The number concentration of particles decreased from 2.8×106 cm-3 to 2.3×105 cm-3,and PM2.5(aerodynamics diameter ≤2.5 µm particulate matter) mass concentrations decreased from 85.9 mg·m-3 to 6.2 mg·m-3.The sucking efficiency of smoke exhaust for PM10 was higher than PM2.5.The number concentration of particles could be declined by 65%,and the cooking fume of PM2.5 could be declined by 75% during the diffusion process detected at the area of 3 m far away from the area where cooking took place.The distribution of PM2.5 mass concentration field of oil fume was simulated by computational fluid dynamics.The temperature field distribution of oil fume was monitored by infrared camera,presenting sector diffusion with the temperature decreasing from 70℃ to room temperature.


Subject(s)
Air Pollution, Indoor/analysis , Cooking , Environmental Monitoring , Particulate Matter/analysis , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...