Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(5): 4344-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22852404

ABSTRACT

The one-pot synthesis and characterization of silver nanoparticle-poly(p-Br-phenylsilane) composites have been carried out. The conversion of silver(+1) salt to stable silver(0) nanoparticles is promoted by poly(p-Br-phenylsilane), Br-PPS possessing both possible reactive Si-H bonds in the polymer backbone and C-Br bonds in the substituents. The composites were characterized using XRD, TEM, FE-SEM, and solid-state UV-vis analytical techniques. TEM and FE-SEM data show the formation of the composites where large number of silver nanoparticles (less than 30 nm of size) are well dispersed throughout the Br-PPS matrix. XRD patterns are consistent with that for fcc-typed silver. The elemental analysis for Br atom and the polymer solubility confirm that the cleavage of C-Br bond and the Si-Br dative bonding were not occurred appreciably at ambient temperature. Nonetheless, TGA data suggest that some sort of cross-linking was occurred at high temperature. The size and processability of such nanoparticles depend on the ratio of metal to Br-PPS. In the absence of Br-PPS, most of the silver particles undergo macroscopic aggregation, which indicates that the polysilane is necessary for stabilizing the silver nanoparticles.

2.
J Nanosci Nanotechnol ; 11(2): 1722-5, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21456276

ABSTRACT

Si-Si/Si-O dehydrocoupling of hydrosilanes with alcohols (1:1.5 mole ratio), catalyzed by AgNO3 which converted to Ag(0) colloidal nanoparticles, gave poly(alkoxysilane)s in one-pot in moderate to high yield. The hydrosilanes include p-X-C6H4SiH3 (X = H, CH3, OCH3, F), PhCH2SiH3, and (PhSiH2)2. The alcohols include MeOH, EtOH, (i)PrOH, PhOH, and CF3(CF2)2CH2OH. The weight average molecular weight and polydispersity of the poly(alkoxysilane)s were in the range of 1,600 approximately 8,000 Dalton and 1.4 approximately 3.5. The dehydrocoupling reactions of phenylsilane with ethanol (1:3 mole ratio) in the presence of the silver nanocolloid catalyst produced only triethoxyphenylsilane as product.

SELECTION OF CITATIONS
SEARCH DETAIL