Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Comp Biochem Physiol B Biochem Mol Biol ; 163(2): 172-83, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22613818

ABSTRACT

Wild female Crassostrea corteziensis oyster (n=245) were analyzed over one year to understand the main ecophysiological events associated to gonad development. Different indicators (mainly biochemical) were analyzed to infer: i) utilization and accumulation of energy reserves (e.g. neutral lipids, carbohydrates, proteins; vitellogenin), ii) membrane components provided by the diet as essential nutrients and indicative of cell proliferation (e.g. highly unsaturated fatty acids linked to phospholipids, sterols), iii) indicators of food availability (chlorophyll a in water, pigments in tissues, specific fatty acids and sterols), iv) gonad development (e.g. gonad coverage area, vitellin). A PCA analysis was applied to 269 measured variables. The first PC (PC1) was composed of total carbohydrate and lipid concentration, percentage of esterified sterols, fatty acids specific of diatoms; 16:1n-7/16:0, 20:5n-3 in neutral lipids with positive loadings and non methylene-interrupted fatty acids (NMI) in neutral lipids with negative loadings. The second PC (PC2) was composed of 18:4n-3 in lipid reserves and the concentration of zeaxanthin, a pigment typical of cyanobacteria with positive loadings and the proportion of 20:4n-6 in polar lipids with negative loading. The third PC (PC3) was composed of gonad coverage area (GCA) and the concentration of vitellin. Variation in GCA confirms that gonad development began in April with an extended period of spawning and rematuration from April to November. The PCA further shows that a second period of minimal maturation from November to March corresponds to the accumulation of reserves (PC1) together with an initial high availability of food (PC2) at the beginning of this period. These two periods are in accordance with the classical periods of allocation of energy to reserves followed by gonad development reported for several mollusks.


Subject(s)
Fatty Acids/metabolism , Pigments, Biological/metabolism , Reproduction/physiology , Animals , Chlorophyll/metabolism , Chlorophyll A , Female , Ostreidae , Seasons , Vitellins/metabolism
2.
Article in English | MEDLINE | ID: mdl-21624493

ABSTRACT

In a previous study, dietary supplementation with arachidonic acid (ARA) to oysters Crassostrea gigas increased haemocyte numbers, phagocytosis, and production of reactive oxygen species level (ROS) by haemocytes (Delaporte et al., 2006). To assess if the observed stimulation of these cellular responses resulted from changes of ARA-related prostaglandin (PG) production, we analysed prostaglandin E2 metabolite (PGEM) content on the same oysters fed three levels of ARA. Dietary supply of polyunsaturated fatty acids (PUFA) could also induce an oxidative stress that could similarly increase cellular responses; therefore, two indicators of oxidative stress were analysed: peroxidation level and antioxidant defence status. Together the observed positive correlation between ARA and PGEM levels and the absence of lipid peroxidation and antioxidant activity changes supports the hypothesis of an immune stimulation via PG synthesis. Although ARA proportion in oyster tissues increased by up to 7-fold in response to ARA dietary supplementation, peroxidation index did not change because of a compensatory decrease in n-3 fatty acid proportion, mainly 22:6n-3. To further confirm the involvement of PG in the changes of haemocyte count, phagocytosis and ROS production upon ARA supplementation, it would be interesting to test cyclooxygenase and lipooxygenase inhibitors in similar experiments.


Subject(s)
Arachidonic Acid/pharmacology , Crassostrea/metabolism , Dietary Supplements , Oxidative Stress , Prostaglandins E/metabolism , Animal Nutritional Physiological Phenomena , Animals , Catalase/metabolism , Crassostrea/drug effects , Crassostrea/enzymology , Free Radical Scavengers/metabolism , Hemocytes/drug effects , Lipid Peroxidation , Phagocytosis , Phospholipids/analysis , Phospholipids/metabolism , Superoxide Dismutase/metabolism
3.
Aquat Toxicol ; 97(2): 96-108, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20045204

ABSTRACT

The effects of an artificial bloom of the toxin-producing dinoflagellate, Alexandrium minutum, upon physiological parameters of the Pacific oyster, Crassostrea gigas, were assessed. Diploid and triploid oysters were exposed to cultured A. minutum and compared to control diploid and triploid oysters fed T. Isochrysis. Experiments were repeated twice, in April and mid-May 2007, to investigate effects of maturation stage on oyster responses to A. minutum exposure. Oyster maturation stage, Paralytic Shellfish Toxin (PST) accumulation, as well as several digestive gland and hematological variables, were assessed at the ends of the exposures. In both experiments, triploid oysters accumulated more PSTs (approximately twice) than diploid oysters. Significant differences, in terms of phenoloxidase activity (PO) and reactive oxygen species (ROS) production of hemocytes, were observed between A. minutum-exposed and non-exposed oysters. PO in hemocytes was lower in oysters exposed to A. minutum than in control oysters in an early maturation stage (diploids and triploids in April experiment and triploids in May experiment), but this contrast was reversed in ripe oysters (diploids in May experiment). In the April experiment, granulocytes of oysters exposed to A. minutum produced more ROS than those of control oysters; however, in the May experiment, ROS production of granulocytes was lower in A. minutum-exposed oysters. Moreover, significant decreases in free fatty acid, monoacylglycerol, and diacylglycerol contents in digestive glands of oysters exposed to A. minutum were observed. Concurrently, the ratio of reserve lipids (triacylglycerol, ether glycerides and sterol esters) to structural lipids (sterols) decreased upon A. minutum exposure in both experiments. Also, several physiological responses to A. minutum exposure appeared to be modulated by maturation stage as well as ploidy of the oysters.


Subject(s)
Crassostrea/physiology , Dinoflagellida/physiology , Seafood/parasitology , Animals , Cell Aggregation/physiology , Digestive System/metabolism , Hemocytes/enzymology , Hemocytes/physiology , Marine Toxins/immunology , Monophenol Monooxygenase/metabolism , Phagocytosis/physiology , Reactive Oxygen Species/metabolism , Seasons
4.
Mar Biotechnol (NY) ; 12(3): 326-39, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19813056

ABSTRACT

Summer mortality of the Pacific oyster Crassostrea gigas is the result of a complex interaction between oysters, their environment, and pathogens. Heredity appears to be a major factor determining the sensitivity of oysters to summer mortality, allowing resistant (R) and susceptible (S) lines to be produced. We conducted genome-wide expression profiling of R and S gonads during the 3-month period preceding a summer mortality event, using a cDNA microarray that we designed. ANOVA analysis revealed that 34 genes were differentially expressed between R and S lines on four dates preceding the mortality event. Annotation of some of these genes highlights reproduction and its allocation and antioxidant defenses as the main pathways that operate differentially between R and S lines. This transcriptional analysis provides new indications to define markers for quantitative trait loci searches and functional studies and evaluate the potential role of each gene in the resistance to summer mortality.


Subject(s)
Genetic Variation , Gonads/metabolism , Oligonucleotide Array Sequence Analysis , Ostreidae/genetics , Ostreidae/metabolism , Animals , Gene Expression Profiling , Gene Expression Regulation/physiology , Hot Temperature , Reproducibility of Results , Seasons , Time Factors
5.
BMC Genomics ; 10: 341, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19640306

ABSTRACT

BACKGROUND: Although bivalves are among the most-studied marine organisms because of their ecological role and economic importance, very little information is available on the genome sequences of oyster species. This report documents three large-scale cDNA sequencing projects for the Pacific oyster Crassostrea gigas initiated to provide a large number of expressed sequence tags that were subsequently compiled in a publicly accessible database. This resource allowed for the identification of a large number of transcripts and provides valuable information for ongoing investigations of tissue-specific and stimulus-dependant gene expression patterns. These data are crucial for constructing comprehensive DNA microarrays, identifying single nucleotide polymorphisms and microsatellites in coding regions, and for identifying genes when the entire genome sequence of C. gigas becomes available. DESCRIPTION: In the present paper, we report the production of 40,845 high-quality ESTs that identify 29,745 unique transcribed sequences consisting of 7,940 contigs and 21,805 singletons. All of these new sequences, together with existing public sequence data, have been compiled into a publicly-available Website http://public-contigbrowser.sigenae.org:9090/Crassostrea_gigas/index.html. Approximately 43% of the unique ESTs had significant matches against the SwissProt database and 27% were annotated using Gene Ontology terms. In addition, we identified a total of 208 in silico microsatellites from the ESTs, with 173 having sufficient flanking sequence for primer design. We also identified a total of 7,530 putative in silico, single-nucleotide polymorphisms using existing and newly-generated EST resources for the Pacific oyster. CONCLUSION: A publicly-available database has been populated with 29,745 unique sequences for the Pacific oyster Crassostrea gigas. The database provides many tools to search cleaned and assembled ESTs. The user may input and submit several filters, such as protein or nucleotide hits, to select and download relevant elements. This database constitutes one of the most developed genomic resources accessible among Lophotrochozoans, an orphan clade of bilateral animals. These data will accelerate the development of both genomics and genetics in a commercially-important species with the highest annual, commercial production of any aquatic organism.


Subject(s)
Crassostrea/genetics , Databases, Genetic , Expressed Sequence Tags , Animals , Gene Expression Profiling , Gene Library , Genome , Genomics/methods , Microsatellite Repeats , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , User-Computer Interface
6.
Gene ; 408(1-2): 27-36, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18054177

ABSTRACT

The generation of EST information is an essential step in the genomic characterisation of species. In the context of the European Network Marine Genomics, a common goal was to significantly increase the amount of ESTs in commercial marine mollusk species and more specifically in the less studied but ecologically and commercially important groups, such as mussel and clam genera. Normalized cDNA libraries were constructed for four different relevant bivalves species (Crassostrea gigas, Mytilus edulis, Ruditapes decussatus and Bathymodiolus azoricus), using numerous tissues and physiological conditions. In this paper, we present the analysis of the 13,013 expressed sequence tags (ESTs) generated. Each EST library was independently assembled and 1300-3000 unique sequences were identified in each species. For the different species, functional categories could be assigned to only about 16 to 27% of ESTs using the GO annotation tool. All sequences have been incorporated into a publicly available database and form the basis for subsequent microarray design, SNP detection and polymorphism analysis, and the placement of novel markers on genetic linkage maps.


Subject(s)
Bivalvia/genetics , Evolution, Molecular , Expressed Sequence Tags , Genomics , Animals , Bivalvia/physiology , Environment , Gene Library , Genetic Markers , Genome , Microsatellite Repeats , Polymorphism, Single Nucleotide , Tandem Repeat Sequences
7.
J Exp Zool A Ecol Genet Physiol ; 307(7): 371-82, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17486628

ABSTRACT

The response of Crassostrea gigas to prolonged hypoxia was investigated for the first time by analyzing the metabolic branch point formed by pyruvate kinase (PK) and hosphoenolpyruvate carboxykinase (PEPCK). PK and PEPCK cDNAs were cloned and sequenced. The main functional domains of the PK sequence, such as the binding sites for ADP/ATP and phosphoenolpyruvate (PEP), were identified whereas the PEPCK sequence showed the specific domain to bind PEP in addition to the kinase-1 and kinase-2 motifs to bind guanosine triphosphate (GTP) and Mg(2+), specific for all PEPCKs. A C-terminal extension was detected for the first time in eukaryota PK. Separation of mitochondrial and cytosolic fraction showed that more than 92% of the PEPCK enzyme activity was cytosolic in gills, digestive gland, mantle and muscle. PK and PEPCK mRNAs and enzyme activities have been measured in muscle during prolonged hypoxia for 20 days. Adaptation of PK in hypoxic muscle at transcriptional level occurred lately by decreasing significantly the PK mRNA level at day 20 while PK enzyme activity was inhibited by the high content of alanine. The PEPCK mRNA ratio in hypoxic muscle significantly increased at day 10 simultaneously to the PEPCK enzyme activity. Succinate accumulation observed at day 10 and day 20 confirmed the anaerobic pathway of muscle metabolism in oyster subjected to hypoxia. Regulation of C. gigas PEPCK in muscle occurred at gene transcription level while PK was first regulated at enzyme level with alanine as allosteric inhibitor, and then at molecular level under a fast effect of hypoxia.


Subject(s)
Crassostrea/enzymology , Gene Expression Regulation, Enzymologic/physiology , Hypoxia/enzymology , Muscles/enzymology , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Pyruvate Kinase/metabolism , Amino Acid Sequence , Animals , Base Sequence , DNA Primers/genetics , Digestive System/metabolism , Gene Expression Regulation, Enzymologic/genetics , Gills/metabolism , Kinetics , Molecular Sequence Data , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Sequence Alignment , Sequence Analysis, DNA , Succinic Acid/metabolism
8.
Lipids ; 41(6): 567-76, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16981435

ABSTRACT

Arachidonic acid (20:4n-6, ArA) and its eicosanoid metabolites have been demonstrated to be implicated in immune functions of vertebrates, fish, and insects. Thus, the aim of this study was to assess the impact of ArA supplementation on the FA composition and hemocyte parameters of oysters Crassostrea gigas. Oyster dietary conditioning consisted of direct addition of ArA solutions at a dose of 0, 0.25, or 0.41 microg ArA per mL of seawater into tanks in the presence or absence of T-Iso algae. Results showed significant incorporation of ArA into gill polar lipids when administered with algae (up to 19.7%) or without algae (up to 12.1%). ArA supplementation led to an increase in hemocyte numbers, phagocytosis, and production of reactive oxygen species by hemocytes from ArA-supplemented oysters. Moreover, the inhibitory effect of Vibrio aestuarianus extracellular products on the adhesive proprieties of hemocytes was lessened in oysters fed ArA-supplemented T-Iso. All changes in oyster hemocyte parameters reported in the present study suggest that ArA and/or eicosanoid metabolites affect oyster hemocyte functions.


Subject(s)
Arachidonic Acid/pharmacology , Crassostrea/chemistry , Crassostrea/drug effects , Dietary Supplements , Fatty Acids/chemistry , Hemocytes/physiology , Adipose Tissue/chemistry , Adipose Tissue/drug effects , Animal Nutritional Physiological Phenomena , Animals , Cell Adhesion , Cell Survival , Eukaryota/chemistry , Gills/chemistry , Hemocytes/chemistry , Phagocytes/chemistry , Reactive Oxygen Species/blood , Reactive Oxygen Species/metabolism
9.
Article in English | MEDLINE | ID: mdl-15936706

ABSTRACT

Two bivalve species Crassostrea gigas and Ruditapes philippinarum were fed eight weeks with three mono-specific algae diets: T-Isochrysis galbana, Tetraselmis suecica, Chaetoceros calcitrans, selected on the basis of their polyunsaturated fatty acid (PUFA) composition. The incorporation and the modification of dietary fatty acids in C. gigas and R. philippinarum gill lipids were analysed and compared. Essential PUFA (20:4n-6, 20:5n-3 and 22:6n-3) and non-methylene interrupted PUFAs (known to be synthesised from monounsaturated precursors) contents of gill polar lipid of both species were greatly influenced by the dietary conditioning. Interestingly, oysters and clams responded differentially to the mono-specific diets. Oysters maintained higher 20:5n-3 level and higher 22:2j/22:i and n-7/n-9 ratio in gill polar lipids than clams. To better discriminate dietary and species influences on the fatty acid composition, a Principal Component Analysis followed by a MANOVA on the two most explicative components was performed. These statistical analyses showed that difference in fatty acid compositions attributable to species were just as significant as the diet inputs. The differences of gill fatty acid compositions between oysters and clams are speculated to result of an intrinsic species characteristic and perhaps of a group characteristic: Fillibranch vs. Eulamellibranch.


Subject(s)
Dietary Fats/metabolism , Fatty Acids/metabolism , Gills/drug effects , Gills/metabolism , Mollusca/metabolism , Animals , Diet , Dietary Fats/administration & dosage , Dietary Fats/pharmacology , Eukaryota , Fatty Acids/administration & dosage , Mollusca/drug effects
10.
J Exp Biol ; 206(Pt 17): 3053-64, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12878673

ABSTRACT

The impact of diets upon the fatty acid composition of haemocyte polar lipids and consequently upon immune parameters has been tested in the oyster Crassostrea gigas and the clam Ruditapes philippinarum. Oysters and clams were fed each of three cultured algae: Chaetoceros calcitrans, which is rich in 20:5(n-3) and 20:4(n-6) and poor in 22:6(n-3) fatty acids; T-Iso (Isochrysis sp.), which is rich in 22:6(n-3) and deficient in 20:5(n-3) and 20:4(n-6); and Tetraselmis suecica, which is deficient in 22:6(n-3) and contains only small amounts of 20:5(n-3) and 20:4(n-6). Fatty acid composition of haemocyte polar lipids was greatly affected by the diet. Oysters and clams fed C. calcitrans maintained a higher proportion of 20:5(n-3) and 20:4(n-6) in their haemocyte polar lipids, while these polyunsaturated fatty acids decreased drastically for animals fed T-Iso. However, the T-Iso diet maintained 22:6(n-3) in haemocyte polar lipids of both species. Higher 20:5(n-3) and 20:4(n-6) contents in diets appeared to have a positive effect upon total haemocyte count, granulocyte percentage, phagocytic rate and oxidative activity of clam haemocytes. Similarly, a positive effect of 20:5(n-3) on oxidative activity of oyster haemocytes was observed but to a lesser extent than in clams. Interestingly, when oyster haemocytes are submitted to a stressful condition, a positive effect of a higher dietary 22:6(n-3) content on the phagocytic rate was noticed.


Subject(s)
Animal Nutritional Physiological Phenomena , Bivalvia/immunology , Energy Metabolism/physiology , Hemocytes/chemistry , Ostreidae/immunology , Analysis of Variance , Animals , Bivalvia/physiology , Eukaryota , Fatty Acids/metabolism , Flow Cytometry , Ostreidae/physiology , Phagocytosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...