Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Glia ; 71(11): 2511-2526, 2023 11.
Article in English | MEDLINE | ID: mdl-37533369

ABSTRACT

The expressions of ion channels by Müller glial cells (MGCs) may change in response to various retinal pathophysiological conditions. There remains a gap in our understanding of MGCs' responses to photoreceptor degeneration towards finding therapies. The study explores how an inhibition of store-operated Ca2+ entry (SOCE) and its major component, Orai1 channel, in MGCs protects photoreceptors from degeneration. The study revealed increased Orai1 expression in the MGCs of retinal degeneration 10 (rd10) mice. Enhanced expression of oxidative stress markers was confirmed as a crucial pathological mechanism in rd10 retina. Inducing oxidative stress in rat MGCs resulted in increasing SOCE and Ca2+ release-activated Ca2+ (CRAC) currents. SOCE inhibition by 2-Aminoethoxydiphenyl borate (2-APB) protected photoreceptors in degenerated retinas. Finally, molecular simulations proved the structural and dynamical features of 2-APB to the target structure Orai1. Our results provide new insights into the physiology of MGCs regarding retinal degeneration and shed a light on SOCE and Orai1 as new therapeutic targets.


Subject(s)
Calcium Channels , Retinal Degeneration , Rats , Mice , Animals , Calcium Channels/metabolism , Ependymoglial Cells/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control , Calcium/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Calcium Signaling/physiology
2.
Iran J Basic Med Sci ; 21(8): 794-799, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30186565

ABSTRACT

OBJECTIVES: Pyocyanin, a blue-green pigment produced by Pseudomonas aeruginosa, interferes with host redox cycles, which can lead to generation of reactive oxygen species and progressive cellular oxidative damage. The aim of this study was to assess the influence of pyocyanin on human pancreatic cancer cell line. MATERIALS AND METHODS: Polymerase Chain Reaction (PCR) was applied to confirm the existence of a specific pyocyanin producing gene (phzM). The pigment was then characterized by UV-visible, FT-IR, and HPLC analysis. Panc-1 cells were treated by different concentrations of pyocyanin and their cytotoxic effect as well as the induction of apoptosis/necrosis were evaluated by XTT assay and flow cytometry. RESULTS: An overnight pyocyanin treatment resulted in significant cell reduction in a concentration-dependent manner. Inhibition rate of 6 mg.ml-1 pyocyanin (the highest concentration) extracted from clinical and soil isolates of P. aeruginosa were 98.69±0.23 and 89.88±1.86%, respectively, which decreased as the pyocyanin concentration lessened. Pyocyanin could also induce dose-dependent apoptosis/necrosis in Panc-1 cells after 24 hr. CONCLUSION: We reported, for the first time, cytotoxic effects of pyocyanin against human pancreatic cancer cell line. Considering this effect of the pigment, study on pyocyanin as a potential anti-tumor biodrug requires further studies.

3.
Iran J Basic Med Sci ; 20(12): 1331-1338, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29238468

ABSTRACT

OBJECTIVES: Pyocyanin is a blue-greenish redox-active pigment, produced by Pseudomonas aeruginosa, with a wide range of biological and biotechnological applications. Pyocyanin biosynthesis is regulated by the quorum-sensing (QS) system in which the expression of QS genes and QS-controlled virulence genes may be affected by serum as a complex medium. In the current study, effects of adult bovine serum (ABS) and fetal bovine serum (FBS) on the production of pyocyanin were examined in order to develop it. MATERIALS AND METHODS: The presence of pyocyanin-producing specific genes and proteins in clinical and soil isolates of P. aeruginosa was confirmed using PCR and SDS-PAGE. Isolates were inoculated to media containing different concentrations of complement-active/-inactivated ABS or FBS and pyocyanin concentration was measured by spectrophotometry. Extracted pigment was characterized by using UV-Visible spectrophotometry. Titration of ABS antibodies against studied isolates was performed by the tube agglutination test. RESULTS: Adding ABS to P. aeruginosa culture medium decreased pyocyanin production compared to the control, while its production increased in FBS-containing media (113.21±2.581 vs. 55.26±0.827 µg.ml-1 and 126.80±2.036 vs. 30.56±0.382 µg.ml-1 of C11 and E8 pyocyanin concentration in the presence of 10% FBS vs. control, respectively). CONCLUSION: In this study, due to the presence of inhibitors such as complement proteins and antibodies in ABS samples, the use of FBS devoid of antibodies was effective to increase pyocyanin production in studied isolates.

SELECTION OF CITATIONS
SEARCH DETAIL