Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Curr Microbiol ; 81(10): 326, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182006

ABSTRACT

Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Nanoparticles , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology , Mycobacterium tuberculosis/drug effects , Nanoparticles/chemistry , Nanomedicine/methods , Drug Resistance, Bacterial , Drug Delivery Systems/methods , Animals
2.
J Clin Tuberc Other Mycobact Dis ; 34: 100412, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38222862

ABSTRACT

Diagnosis of Mycobacterium tuberculosis (Mtb) before the progression of pulmonary infection can be very effective in its early treatment. The Mtb grows so slowly that it takes about 6-8 weeks to be diagnosed even using sensitive cell culture methods. The main opponent in tuberculosis (TB) and nontuberculous mycobacterial (NTM) epidemiology, like in all contagious diseases, is to pinpoint the source of infection and reveal its transmission and dispersion ways in the environment. It is crucial to be able to distinguish and monitor specific mycobacterium strains in order to do this. In food analysis, clinical diagnosis, environmental monitoring, and bioprocess, biosensing technologies have been improved to manage and detect Mtb. Biosensors are progressively being considered pioneering tools for point-of-care diagnostics in Mtb discoveries. In this review, we present an epitome of recent developments of biosensing technologies for M. tuberculosis detection, which are categorized on the basis of types of electrochemical, Fluorescent, Photo-thermal, Lateral Flow, Magneto-resistive, Laser, Plasmonic, and Optic biosensors.

3.
J Clin Lab Anal ; 38(3): e25006, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38268233

ABSTRACT

BACKGROUND: Procalcitonin (PCT) is a critical biomarker that is released in response to bacterial infections and can be used to differentiate the pathogenesis of the infectious process. OBJECTIVE: In this article, we provide an overview of recent advances in PCT biosensors, highlighting different approaches for biosensor construction, different immobilization methods, advantages and roles of different matrices used, analytical performance, and PCT biosensor construction. Also, we will explain PCT biosensors sensible limits of detection (LOD), linearity, and other analytical characteristics. Future prospects for the development of better PCT biosensor systems are also discussed. METHODS: Traditional methods such as capillary electrophoresis, high-performance liquid chromatography, and mass spectrometry are effective in analyzing PCT in the medical field, but they are complicated, time-consuming sample preparation, and require expensive equipment and skilled personnel. RESULTS: In the past decades, PCT biosensors have emerged as simple, fast, and sensitive tools for PCT analysis in various fields, especially medical fields. CONCLUSION: These biosensors have the potential to accompany or replace traditional analytical methods by simplifying or reducing sample preparation and making field testing easier and faster, while significantly reducing the cost per analysis.


Subject(s)
Bacterial Infections , Biosensing Techniques , Humans , Procalcitonin , Bacterial Infections/diagnosis , Biosensing Techniques/methods , Biomarkers , Limit of Detection
4.
Clin Chim Acta ; 552: 117668, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37992849

ABSTRACT

Reproductive biomarkers are important regulators in women, especially during pregnancy and childbirth. Because of their essential role in women's health, the discovery and quantification of reproductive biomarkers is of great clinical importance. Nowadays, there are many detection strategies to detect these biomarkers, including VEGF, human chorionic gonadotropin (hCG), etc. Consider the limitations and problems of conventional diagnostic methods, new methods are being developed, one of the most important being methods based on nanotechnology. This review includes a review of methods for diagnosing reproductive biomarkers, ranging from mainstream to nanotechnology-based methods. The bulk of this article is an in-depth introduction to the latest advances in biosensor and nanosensor research for the detection and quantitative identification of reproductive biomarkers.


Subject(s)
Chorionic Gonadotropin , Reproduction , Pregnancy , Humans , Female , Biomarkers , Parturition
5.
Enzyme Microb Technol ; 174: 110380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38147783

ABSTRACT

Sepsis is a serious disease caused by an impaired host immune response to infection, resulting in organ dysfunction, tissue damage and is responsible for high in-hospital mortality (approximately 20%). Recently, WHO documented sepsis as a global health priority. Nevertheless, there is still no effective and specific therapy for clinically detecting sepsis. Nanomaterial-based approaches have appeared as promising tools for identifying bacterial infections. In this review, recent biosensors are introduced and summarized as nanomaterial-based platforms for sepsis management and severe complications. Biosensors can be used as tools for the diagnosis and treatment of sepsis and as nanocarriers for drug delivery. In general, diagnostic methods for sepsis-associated bacteria, biosensors developed for this purpose are presented in detail, and their strengths and weaknesses are discussed. In other words, readers of this article will gain a comprehensive understanding of biosensors and their applications in sepsis management.


Subject(s)
Biosensing Techniques , Nanostructures , Sepsis , Humans , Sepsis/diagnosis , Sepsis/drug therapy , Nanostructures/therapeutic use , Biosensing Techniques/methods
6.
RSC Adv ; 13(44): 30925-30936, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37876653

ABSTRACT

Lymphatic vessel endothelium expresses various lymphatic marker molecules. LYVE-1, the lymphatic vessel endothelial hyaluronan (HA) receptor, a 322-residue protein belonging to the integral membrane glycoproteins which is found on lymph vessel wall and is completely absent from blood vessels. LYVE-1 is very effective in the passage of lymphocytes and tumor cells into the lymphatics. As regards cancer metastasis, in vitro studies indicate LYVE-1 to be involved in tumor cell adhesion. Researches show that, in neoplastic tissue, LYVE-1 is limited to the lymphovascular and could well be proper for studies of tumor lymphangiogenesis. So, the monitoring of LYVE-1 level in human biofluids has provided a valuable approach for research into tumor lymphangiogenesis. For the first time, an innovative paper-based electrochemical immune-platform was developed for recognition of LYVE-1. For this purpose, graphene quantum dots decorated silver nanoparticles nano-ink was synthesized and designed directly by writing pen-on paper technology on the surface of photographic paper. This nano-ink has a great surface area for biomarker immobilization. The prepared paper-based biosensor was so small and cheap and also has high stability and sensitivity. For the first time, biotinylated antibody of biomarker (LYVE-1) was immobilized on the surface of working electrode and utilized for the monitoring of specific antigen by simple immune-assay strategy. The designed biosensor showed two separated linear ranges in the range of 20-320 pg ml-1 and 0.625-10 pg ml-1, with the acceptable limit of detection (LOD) of 0.312 pg ml-1. Additionally, engineered immunosensor revealed excellent selectivity that promises its use in complex biological samples and assistance for biomarker-related disease screening in clinical studies.

7.
Heliyon ; 9(9): e19467, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810167

ABSTRACT

Hypertension is associated with structural and functional changes in blood vessels with increased arteriosclerosis, vascular inflammation, and endothelial dysfunction. Decreased adherence (compliance) to antihypertensive medications contributes significantly to morbidity and mortality in hypertensive patients. Antihypertensive drugs (AHTDs) and lifestyle changes are the main cornerstones for treating hypertension. Several approaches have been described in the literature for determining AHTDs based on different analytical techniques. Amongst biosensors are one of the most attractive tools due to their inherent advantages. Biosensors are used for the detection of wide range of biomarkers as well as different drugs in past two decades. The main focus of the present study is to review the latest biosensors developed for the detection of AHTDs. Readers of the present study will be able to familiarize themselves with biosensors as advanced and modern diagnostic tools while reviewing the most widely used AHTDs. In the present study, the routine methods are first reviewed and while examining their advantages and disadvantages, biosensors have been introduced as ideal alternative tools.

8.
Cell Mol Neurobiol ; 43(8): 3915-3928, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37740074

ABSTRACT

Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.


Subject(s)
Brain Ischemia , Reperfusion Injury , Humans , Antioxidants/pharmacology , Reperfusion Injury/pathology , Brain Ischemia/pathology , Oxidative Stress , Hippocampus/metabolism , Ischemia , Free Radicals
9.
Adv Pharm Bull ; 13(3): 502-511, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37646056

ABSTRACT

Tau protein plays a crucial role in diagnosing neurodegenerative diseases. However, performing an assay to detect tau protein on a nanoscale is a great challenge for early diagnosis of diseases. Enzyme-linked immunosorbent assay (ELISA), western-blotting, and molecular-based methods, e.g., PCR and real-time PCR, are the most widely used methods for detecting tau protein. These methods are subject to certain limitations: the need for advanced equipment, low sensitivity, and specificity, to name a few. With the above said, it is necessary to discover advanced and novel methods for monitoring tau protein. Counted among remarkable approaches adopted by researchers, biosensors can largely eliminate the difficulties and limitations associated with conventional methods. The main objective of the present study is to review the latest biosensors developed to detect the tau protein. Furthermore, the problems and limitations of conventional diagnosis methods were discussed in detail.

10.
Cell Mol Neurobiol ; 43(8): 3801-3814, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37605014

ABSTRACT

Key biomarkers such as Brain Derived Neurotrophic Factor (BDNF) and Neurofilament light chain (NfL) play important roles in the development and progression of many neurological diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In these clinical conditions, the underlying biomarker processes are markedly heterogeneous. In this context, robust biomarker discovery is of critical importance for screening, early detection, and monitoring of neurological diseases. The difficulty of directly identifying biochemical processes in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory response have been identified in various body fluids such as blood, cerebrospinal fluid, and tears. Furthermore, biotechnology and nanotechnology have facilitated the development of biosensor platforms capable of real-time detection of multiple biomarkers in clinically relevant samples. Biosensing technology is approaching maturity and will be deployed in communities, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight clinical and current technological advances in the development of multiplex-based solutions for effective diagnosis and monitoring of neuroinflammatory and neurodegenerative diseases. The trend in the detection if BDNF and NfL.


Subject(s)
Alzheimer Disease , Multiple Sclerosis , Neurodegenerative Diseases , Humans , Brain-Derived Neurotrophic Factor , Neurofilament Proteins/cerebrospinal fluid , Biomarkers , Neurodegenerative Diseases/diagnosis
11.
Biomed Microdevices ; 25(3): 27, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37498420

ABSTRACT

Early diagnosis of C reactive protein (CRP) is critical to applying effective therapies for related diseases. Diagnostic technology in today's healthcare systems is mostly deployed in central laboratories, involves expensive and time-consuming processes, and is operated by specialized personnel. For example, the enzyme-linked immunosorbent assay (ELISA), considered the gold standard diagnostic method, is labor-intensive and requires complex procedures such as multiple washing and labeling steps. Due to these limitations of current diagnostic techniques, it is difficult for people to regularly monitor their health and ultimately the disease is more likely to be diagnosed at a later stage. The problem is exacerbated for economically disadvantaged people living in underdeveloped countries. To address these challenges in the traditional diagnostic field, point-of-care (POC) biosensors have emerged as a promising alternative. This allows patients to have their health checked regularly at or near their bedside without resorting to laboratory tests. Nanotechnology-based methods such as biosensors have been extensively researched and developed. Among biosensors, there are also label-free biosensors with high sensitivity that do not require complicated procedures and reduce test time. However, some drawbacks such as high cost, bulky size and need for trained personnel to operate have not been improved. In this review article, we provide an overview of routine methods in CRP diagnosis and then introduce biosensors as a modern, advanced alternative to older methods. Readers of this article can learn about biosensing and its benefits while being aware of the limitations of routine methods.


Subject(s)
Biosensing Techniques , C-Reactive Protein , Biosensing Techniques/methods , C-Reactive Protein/analysis , Humans , Sensitivity and Specificity , Nanomedicine , Point-of-Care Testing
12.
Bioanalysis ; 15(10): 567-580, 2023 May.
Article in English | MEDLINE | ID: mdl-37170535

ABSTRACT

Aim: This study aimed to establish a label-free electrochemical biosensor for telomerase detection in human biofluid. Method: Synthesized green nanocomposite (poly[chitosan] decorated by gold nanoparticles) was used for the efficient immobilization of biotinylated antibody of telomerase and immunocomplex of antigen-antibody. Poly(chitosan) was decorated by gold nanoparticles on the surface of a glassy carbon electrode using an electrochemical coating technique. Results: The constructed immunosensor exhibited wide dynamic range (0.078-160 IU/ml-1) with a low limit of quantification of 0.078 IU/ml-1, which present a unique manner for telomerase assays in early prognosis for cancers. Conclusion: This study encourages scientists and scholars to design and develop new biosensor platforms for point-of-care diagnostics for telomerase management, an interesting reference for future research.


Subject(s)
Biosensing Techniques , Chitosan , Metal Nanoparticles , Telomerase , Humans , Gold , Biosensing Techniques/methods , Immunoassay/methods , Electrochemical Techniques/methods , Antibodies , Electrodes , Limit of Detection
13.
J Mol Recognit ; 36(4): e2952, 2023 04.
Article in English | MEDLINE | ID: mdl-34985150

ABSTRACT

This research work explains the development of an electrochemical immunosensor for the selective recognition of SNCA in human biofluids. An innovative protocol was proposed for the green synthesis of gold nanoparticle-supported dimethylglyoxime (AuNPs@DMGO) using one-step electrogeneration method. Also, the application of AuNPs@DMGO for the sensitive quantification of α-Synuclein (SNCA) protein and its biomedical analysis. So, an innovative sandwich immunosensor was designed for the sensitive identification of SNCA antigen in an aqueous solution. The gold nanoparticles (AuNPs) were decorated on the surface of the glassy carbon electrode by chronoamperometry technique to provide appropriate immobilization surface with a large number of active sites for immobilization of specific biotinylated antibody (Ab1) and against SNCA protein. Then, the sandwich-type immuno-platform was completed by the attachment of secondary antibody (HRP conjugated Ab [Ab2]) to the primary complexes on the surface of the electrode. For the first time, α-Synuclein protein was measured with an acceptable linear range of 4-64 ng/mL and a lower limit of quantification of 4 ng/mL. Benefiting from the simplicity and high sensitivity, the proposed method shows a potential of employment in clinical applications and high-throughput screening of Parkinson's disease using POC.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Parkinson Disease , Humans , Gold/chemistry , Biosensing Techniques/methods , alpha-Synuclein , Metal Nanoparticles/chemistry , Parkinson Disease/diagnosis , Limit of Detection , Immunoassay/methods , Antibodies/chemistry , Electrochemical Techniques/methods
14.
Curr Microbiol ; 80(1): 29, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36474077

ABSTRACT

The relationship between gut microbiota and pain, such as visceral pain, headaches (migraine), itching, prosthetic joint infection (PJI), chronic abdominal pain (CAP), joint pain, etc., has received increasing attention. Several parts of the evidence suggest that microbiota is one of the most important pain modulators and they can regulate pain in the central and peripheral nervous systems. Any alteration in microbiota by diet or antibiotics mediation may characterize a novel therapeutic strategy for pain management. The present study includes the most up-to-date and influential scientific findings on the association of microbiota with pain, despite the fact that the underlying mechanism is not identified in most cases. According to recent research, identifying the molecular mechanisms of the microbiota-pain pathway can have a unique perspective in treating many diseases, even though there is a long way to reach the ideal point. This study will stress the influence of microbiota on the common diseases that can stimulate the pain with a focus on underlying mechanisms.


Subject(s)
Pain , Humans
15.
RSC Adv ; 12(44): 28473-28488, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320526

ABSTRACT

Hyaluronic Acid (HA) is a non-sulfated glycosaminoglycan, which is a potential biomarker that could be evaluated in the diagnosis of some cancers. For the first time, a novel label-free electrochemical immunosensor was developed based on modified ITO-PET (indium tin oxide-polyethylene terephthalate) electrodes for the sensitive recognition of hyaluronic acid (HA) in real samples. A disposable ITO-coated PET electrode was modified with gold nanoparticles (AuNPs) to construct a suitable substrate for the efficient immobilization of biotinylated antibodies of HA. Importantly, the encapsulation of biotinylated antibody of HA in KCC1-NH-CS2 was performed successfully, which was another innovative part of this bio-device construction. For determining the immobilization steps and optimization of the biosensor, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used. Furthermore, the morphological characterization of each ITO electrode surface was performed by field emission scanning electron microscopy (FESEM). Specific binding of gold nanoparticles supported CTAB to ITO-PET and its bioconjugation with the biotinylated antibody of HA was studied using the electroanalysis of the sensor performance. For the better performance of the antibody to generate an immunocomplex with HA (antigen), its encapsulation was performed, which led to the excellent behavior of the immunosensor. The proposed HA immunosensor indicated excellent reproducibility, high selectivity, and long-term stability. The HA electrochemical immunosensor performed perfectly with a wide determination range (0.078 to 160 ng mL-1) and a low limit of quantification (0.078 ng mL-1) in human plasma samples. It is recommended that the designed biosensor can be used as a diagnostic tool in clinical bioassays in the near future.

16.
Anal Methods ; 14(40): 4029, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36200431

ABSTRACT

Correction for 'Bioconjugation of 2-arachidonoyl glycerol (2-AG) biotinylated antibody with gold nano-flowers toward immunosensing of 2-AG in human plasma samples: a novel immuno-platform for the screening of immunomodulation and neuroprotection using biosensing' by Ahmad Mobed et al., Anal. Methods, 2021, 13, 311-321, https://doi.org/10.1039/D0AY02135K.

17.
Clin Chim Acta ; 533: 175-182, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35798056

ABSTRACT

A broad group of antiepileptic drugs (AEDs) often controls the frequency of seizures. Given the variability of pharmacokinetics, narrow target range, and the difficulty of identifying signs of toxicity from laboratory responses, therapeutic monitoring of AEDs plays a vital role in optimizing drug administration. Nanomaterials, especially biosensor-based methods, can facilitate the analysis of these agents with unique advantages such as rapid analysis, sensitivity, selectivity, and low cost. This review describes recent advances in biosensors developed to analyze AEDs. First, we described common electrochemical measurement techniques and types of deposited electrode substrates. Additionally, various chemical and biological modifiers to improve the sensitivity and selectivity of the sensor have been categorized and briefly described. Finally, the prospects for developing an electrochemical platform for quantifying AEDs are presented.


Subject(s)
Biosensing Techniques , Nanostructures , Anticonvulsants/therapeutic use , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Technology
18.
Biotechnol Lett ; 44(5-6): 683-701, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35543825

ABSTRACT

Cancer is undoubtedly one of the major human challenges worldwide. A number of pathogenic bacteria are deemed to be potentially associated with the disease. Accordingly, accurate and specific identification of cancer-associated bacteria can play an important role in cancer control and prevention. A variety of conventional methods such as culture, serology, and molecular-based methods as well as PCR and real-time PCR have been adopted to identify bacteria. However, supply costs, machinery fees, training expenses, consuming time, and the need for advanced equipment are the main problems with the old methods. As a result, advanced and modern techniques are being developed to overcome the disadvantages of conventional methods. Biosensor technology is one of the innovative methods that has been the focus of researchers due to its numerous advantages. The main purpose of this study is to provide an overview of the latest developed biosensors for recognizing the paramount cancer-associated bacteria.


Subject(s)
Biosensing Techniques , Neoplasms , Bacteria/genetics , Humans , Neoplasms/diagnosis , Real-Time Polymerase Chain Reaction , Technology
19.
RSC Adv ; 12(22): 14154-14166, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35558840

ABSTRACT

The endocannabinoid system (ECS) is a complex of neurotransmitters in the central nervous system and plays a key role in regulating cognitive and physiological processes. 2-Arachidonoylglycerol (2-AG) is one of the imperative endocannabinoids that play key roles in the central nervous system. It acts as a signaling lipid and activates the cannabinoid CB1 receptor. In addition, 2-AG is involved in a variety of physiological functions such as energy balance, emotion, pain sensation, cognition, and neuroinflammation. So, rapid and specific diagnosis of 2-AG is of great importance in medical neuroscience. The development of new methods in this area has been one of the most important research areas in recent years. Herein, an innovative immunosensor is developed for quantification of 2-AG. For this means, gold nanostars (GNS) were synthesized and conjugated with a specific biotinylated antibody against 2-AG. The resultant bioconjugate, a bioreceptor with GNS, was immobilized on the surface of a gold electrode and used for the detection of the antigen based on the immunocomplex formation followed by analysis using different electrochemical techniques. For the first time, 2-AG protein was measured with an excellent linear range of 0.48-1 ng mL-1 and lower limit of quantification of 0.48 ng L-1 by the electroanalysis method. The engineered immunosensor showed high sensitivity and specificity in the presence of interfering antigens, proving its utility in neurological disorder detection. This immunosensor is the first sandwich type immunoassay for the detection of 2-AG in real samples and the first innovation of designing a novel sandwich type immunosensor for this analyte. Also, excellent analytical results are other advantages of this biosensor for the detection of 2-AG in human plasma samples and serum samples of rats under sleep deprivation. So, this is the first report of an immunosensor of 2-AG using a sandwich type immunosensor.

SELECTION OF CITATIONS
SEARCH DETAIL