Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 723923, 2022.
Article in English | MEDLINE | ID: mdl-35528741

ABSTRACT

Objective: The purpose of this pilot study was to determine if military service members with histories of hundreds to thousands of low-level blast exposures (i. e., experienced breachers) had different levels of serum and neuronal-derived extracellular vesicle (EV) concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor alpha (TNFα), compared to matched controls, and if these biomarkers related to neurobehavioral symptoms. Methods: Participants were experienced breachers (n = 20) and matched controls without blast exposures (n = 14). Neuronal-derived EVs were isolated from serum and identified with mouse anti-human CD171. Serum and neuronal-derived EVs were analyzed for IL-6, IL-10, and TNFα using an ultra-sensitive assay. Results: Serum TNFα concentrations were decreased in breachers when compared to control concentrations (p < 0.01). There were no differences in serum concentrations of IL-6, IL-10, or the IL-6/IL-10 ratio between breachers and controls (p's > 0.01). In neuronal-derived EVs, TNFα and IL-6 levels were increased in breachers compared to controls (p's < 0.01), and IL-10 levels were decreased in the breacher group compared to controls (p < 0.01). In breachers the IL-6/IL-10 ratio in neuronal-derived EVs was higher compared to controls, which correlated with higher total Rivermead Post-concussion Questionnaire (RPQ) scores (p's < 0.05). Conclusions: These findings suggest that exposure of personnel to high numbers of low-level blast over a career may result in enduring central inflammation that is associated with chronic neurological symptoms. The data also suggest that peripheral markers of inflammation are not necessarily adequate surrogates for central neuroinflammation.

2.
J Neurotrauma ; 37(23): 2468-2481, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32928028

ABSTRACT

Combat military and civilian law enforcement personnel may be exposed to repetitive low-intensity blast events during training and operations. Persons who use explosives to gain entry (i.e., breach) into buildings are known as "breachers" or dynamic entry personnel. Breachers operate under the guidance of established safety protocols, but despite these precautions, breachers who are exposed to low-level blast throughout their careers frequently report performance deficits and symptoms to healthcare providers. Although little is known about the etiology linking blast exposure to clinical symptoms in humans, animal studies demonstrate network-level changes in brain function, alterations in brain morphology, vascular and inflammatory changes, hearing loss, and even alterations in gene expression after repeated blast exposure. To explore whether similar effects occur in humans, we collected a comprehensive data battery from 20 experienced breachers exposed to blast throughout their careers and 14 military and law enforcement controls. This battery included neuropsychological assessments, blood biomarkers, and magnetic resonance imaging measures, including cortical thickness, diffusion tensor imaging of white matter, functional connectivity, and perfusion. To better understand the relationship between repetitive low-level blast exposure and behavioral and imaging differences in humans, we analyzed the data using similarity-driven multi-view linear reconstruction (SiMLR). SiMLR is specifically designed for multiple modality statistical integration using dimensionality-reduction techniques for studies with high-dimensional, yet sparse, data (i.e., low number of subjects and many data per subject). We identify significant group effects in these data spanning brain structure, function, and blood biomarkers.


Subject(s)
Blast Injuries/pathology , Brain Injuries, Traumatic/pathology , Brain/pathology , Adult , Blast Injuries/complications , Blast Injuries/diagnostic imaging , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/etiology , Humans , Male , Middle Aged , Neuroimaging/methods
3.
Front Neurol ; 11: 588377, 2020.
Article in English | MEDLINE | ID: mdl-33391154

ABSTRACT

Background: Blast exposure is a potential hazard in modern military operations and training, especially for some military occupations. Helmets, peripheral armor, hearing protection, and eye protection worn by military personnel provide some acute protection from blast effects but may not fully protect personnel against cumulative effects of repeated blast overpressure waves experienced over a career. The current study aimed to characterize the long-term outcomes of repeated exposure to primary blast overpressure in experienced career operators with an emphasis on the assessment of hearing and vestibular outcomes. Methods: Participants included experienced "breachers" (military and law enforcement explosives professionals who gain entry into structures through controlled detonation of charges) and similarly aged and experienced "non-breachers" (non-breaching military and law enforcement personnel). Responses to a clinical interview and performance on audiological and vestibular testing were compared. Results: Hearing loss, ringing in the ears, irritability, and sensitivity to light or noise were more common among breachers than non-breachers. Breachers reported more combat exposure than non-breachers, and subsequently, memory loss and difficulty concentrating were associated with both breaching and combat exposure. Vestibular and ocular motor outcomes were not different between breachers and non-breachers. Conclusion: Hearing-related, irritability, and sensitivity outcomes are associated with a career in breaching. Future studies examining long-term effects of blast exposure should take measures to control for combat exposure.

4.
J Neuroimaging ; 29(1): 52-61, 2019 01.
Article in English | MEDLINE | ID: mdl-30232810

ABSTRACT

BACKGROUND AND PURPOSE: Teriflunomide reduces disability progression and brain atrophy in multiple sclerosis patients. The exact mechanism of action by which teriflunomide exerts these effects is currently unknown. We assessed the effect of teriflunomide on brain glial cells in the Theiler's murine encephalomyelitis virus (TMEV) by using a histological approach in combination with neuroimaging. METHODS: Forty-eight SJL female mice received an intracerebral injection of TMEV at 6-8 weeks of age and were then treated with teriflunomide (n = 24) or placebo (n = 24) for 9 months. They were examined with MRI and behavioral testing at 2, 6, and 9 months postinduction (mPI). Of those, 18 teriflunomide-treated and 17 controls mice were analyzed histologically at 9 mPI to sample from different brain regions for myelination status, microglial density, and oligodendroglial lineage. The histological and MRI outcomes were correlated. RESULTS: Corpus callosum microglial density was numerically lower in the teriflunomide-treated mice compared to the control group (141.1 ± 21.7 SEM vs. 214.74 ± 34.79 SEM, Iba1+ cells/mm2 , P = .087). Basal ganglia (BG) microglial density in the teriflunomide group exhibited a negative correlation with fractional anisotropy (P = .021) and a positive correlation with mean diffusivity (P = .034), indicating less inflammation and axonal damage. Oligodendroglial lineage cell and myelin density were not significantly different between treatment groups. However, a significant positive correlation between BG oligodendrocytes and BG volume (P = .027), and with N-acetyl aspartate concentration (P = .008), was found in the teriflunomide group, indicating less axonal loss. CONCLUSION: Teriflunomide altered microglia density and oligodendrocytes differentiation, which was associated with less evident microstructural damage on MRI.


Subject(s)
Corpus Callosum/diagnostic imaging , Crotonates/pharmacology , Demyelinating Diseases/diagnostic imaging , Neuroglia/drug effects , Toluidines/pharmacology , Animals , Corpus Callosum/pathology , Demyelinating Diseases/pathology , Disease Models, Animal , Female , Hydroxybutyrates , Mice , Neuroglia/pathology , Neuroimaging , Nitriles , Theilovirus
5.
PLoS One ; 12(8): e0182729, 2017.
Article in English | MEDLINE | ID: mdl-28796815

ABSTRACT

BACKGROUND: Pathology of gray matter is associated with development of physical and cognitive disability in patients with multiple sclerosis. In particular, glutamatergic dysregulation in the cortex-basal ganglia-thalamus (CxBGTh) circuit could be associated with decline in these behaviors. OBJECTIVES: To investigate the effect of an immunomodulatory therapy (teriflunomide, Aubagio®) on changes of the CxBGTh loop in the Theiler's Murine Encephalomyelitis Virus, (TMEV) mouse model of MS. METHODS: Forty-eight (48) mice were infected with TMEV, treated with teriflunomide (24) or control vehicle (24) and followed for 39 weeks. Mice were examined with MRS and volumetric MRI scans (0, 8, 26, and 39 weeks) in the cortex, basal ganglia and thalamus, using a 9.4T scanner, and with behavioral tests (0, 4, 8, 12, 17, 26, and 39 weeks). Within conditions, MRI measures were compared between two time points by paired samples t-test and across multiple time points by repeated measures ANOVA (rmANOVA), and between conditions by independent samples t-test and rmANOVA, respectively. Data were considered as significant at the p<0.01 level and as a trend at p<0.05 level. RESULTS: In the thalamus, the teriflunomide arm exhibited trends toward decreased glutamate levels at 8 and 26 weeks compared to the control arm (p = 0.039 and p = 0.026), while the control arm exhibited a trend toward increased glutamate between 0 to 8 weeks (p = 0.045). In the basal ganglia, the teriflunomide arm exhibited a trend toward decreased glutamate earlier than the control arm, from 0 to 8 weeks (p = 0.011), resulting in decreased glutamate compared to the control arm at 8 weeks (p = 0.016). CONCLUSIONS: Teriflunomide may reduce possible excitotoxicity in the thalamus and basal ganglia by lowering glutamate levels.


Subject(s)
Basal Ganglia/drug effects , Crotonates/pharmacology , Multiple Sclerosis/drug therapy , Thalamus/drug effects , Toluidines/pharmacology , Animals , Basal Ganglia/metabolism , Cell Line , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Excitatory Amino Acid Agents/pharmacology , Female , Glutamic Acid/metabolism , Hydroxybutyrates , Mesocricetus , Mice , Myelitis/drug therapy , Nitriles , Thalamus/metabolism , gamma-Aminobutyric Acid/metabolism
6.
Mult Scler ; 22(1): 36-42, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25921038

ABSTRACT

BACKGROUND: Cognitive decline is characterized in multiple sclerosis (MS), but the rate and severity vary. The reserve hypothesis proposes that baseline neurological differences impact cognitive outcome in neurodegenerative disease. OBJECTIVE: To elucidate how brain reserve and cognitive reserve influence subcortical gray matter (SCGM) atrophy and cognitive decline in MS over 3 years. METHODS: Seventy-one MS patients and 23 normal controls underwent magnetic resonance imaging and cognitive assessment at baseline and 3-year follow-up. The influence of reserve on cognitive processing speed (CPS) and memory was examined. RESULTS: SCGM volume and cognitive scores were lower in MS than normal controls (P⩽0.001). Accounting for baseline, comparison of follow-up means yielded a difference between groups in SCGM volume (P<0.001) but not cognition (NS). Cognitive reserve (P=0.005), but not brain reserve, contributed to CPS, with only low cognitive reserve MS subjects showing decline in CPS (P=0.029). SCGM change predicted CPS outcome in MS with low cognitive reserve (P=0.002) but not high cognitive reserve. There were no effects in the domain of memory. CONCLUSIONS: SCGM atrophy occurs in normal controls, but significantly more so in MS. While CPS did not change in normal controls, low cognitive reserve was associated with CPS decline in MS. High cognitive reserve protect MS patients from cognitive decline related to SCGM atrophy.


Subject(s)
Cognition Disorders/physiopathology , Cognitive Reserve/physiology , Gray Matter/pathology , Memory Disorders/physiopathology , Multiple Sclerosis/pathology , Multiple Sclerosis/physiopathology , Psychomotor Performance/physiology , Adult , Atrophy/pathology , Cognition Disorders/etiology , Female , Follow-Up Studies , Humans , Male , Memory Disorders/etiology , Middle Aged , Multiple Sclerosis/complications , Protective Factors
SELECTION OF CITATIONS
SEARCH DETAIL