Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem (Oxf) ; 3: 100029, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35415644

ABSTRACT

Ketogenic diets consist of low carbohydrate/high fat, shifting energy reliance from glucose to ketone bodies. Ketone diester supplement to a standard diet (ketone ester) increases ketone bodies by adding a substance without altering other consumed foods. We evaluated weight, glucose, and ketone concentrations in rats fed ketogenic diet and ketone ester feeds. We hypothesized that these feeds would increase ketones and decrease glucose and weight. We tested 16 male and 16 female Sprague Dawley rats randomly assigned to standard diet, ketogenic diet, or ketone ester for two weeks. Weight and blood glucose and ketones were measured daily. Group means were compared by analysis of variance. Ketogenic diet and ketone ester both increased ketones and decreased weight compared to standard diet (p < 0.001). Glucose decreased only in ketogenic diet (p = 0.010), driven by a decrease from higher starting concentrations observed in standard diet males. Sex interacted with weight, with male gains impacted more by both ketogenic diet and ketone ester than female gains. Ketogenic diet had a larger effect size than ketone ester with regard to increased ketones and decreased weight. Ketogenic diet glucose significantly decreased over time because standard diet concentrations in males were high prior to initializing ketogenic diet. This suggests sex differences in energy substrate utilization. Ketogenic diet ketones peaked at 72 h then decreased to near basal levels at about 10 days, suggesting "fat adaption." While this work is part of a larger project examining blast exposure, these results are relevant to any military forces considering ketone-increasing foods.

2.
J Neurotrauma ; 38(12): 1654-1661, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33138683

ABSTRACT

Long-term, repeated exposure to low-intensity blast overpressure is a potential causal factor of lasting outcomes reminiscent of post-concussion syndrome. Wearable blast sensor engineers are exploring elements of blast that are associated with outcomes. Currently, however, there are no devices that can truly record all blasts experienced by an individual. Military service members (n = 984) were surveyed about their lifelong exposure and behavioral health. Using heavy-arms-associated target outcomes, we calculated a generalized blast exposure value (GBEV) for each participant. A threshold of 200,000 GBEV units was established at which a participant was likely to report more intense symptomology. If repetitive, low-intensity blast exposure has even a subtle effect over time, operational readiness could be negatively impacted. A threshold of exposure can inform decisions about how to reduce detrimental exposure. The GBEV can be used to track ongoing exposure and potentially identify those who may be at risk for developing blast-related outcomes.


Subject(s)
Blast Injuries/complications , Military Medicine/methods , Surveys and Questionnaires , Adult , Female , Humans , Male , Middle Aged , Military Personnel
SELECTION OF CITATIONS
SEARCH DETAIL
...