Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 18(1): 580-594, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-34914383

ABSTRACT

The growing interest in the effects of external electric fields on reactive processes requires predictive methods that can reach longer length and time scales than quantum mechanical simulations. Recently, many studies have included electric fields in ReaxFF, a widely used reactive molecular dynamics method. In the case of modeling an external electric field, the charge distribution method used in ReaxFF is critical. The most common charge distribution method used in previous studies of electric fields is the charge equilibration (QEq) method, which assumes that the system is a contiguous conductor and that charge transfer can occur across any distance. In contrast, many systems of interest are insulators or semiconductors, and long-distance charge transfer should not occur in response to a small difference in potential. This study focuses on the limitations of the QEq method in the context of water in an external electric field. We demonstrate that QEq can predict unphysical charge distributions and exhibits properties that do not converge as a function of system size. Furthermore, we show that electric fields within the recently developed atom-condensed Kohn-Sham density functional theory (DFT) approximated to the second-order (ACKS2) approach address the major limitations of electric fields in QEq. With ACKS2, we observe more physical charge distributions and properties that converge as a function of system size. We do not suggest that ACKS2 is perfect in all circumstances but rather show specific cases where it addresses the major shortcomings of QEq in the context of an external electric field.

2.
Sci Rep ; 10(1): 3537, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32103134

ABSTRACT

Through a combination of single crystal growth, experiments involving in situ deposition of surface adatoms, and complimentary modeling, we examine the electronic transport properties of lithium-decorated ZrTe5 thin films. We observe that the surface states in ZrTe5 are robust against Li adsorption. Both the surface electron density and the associated Berry phase are remarkably robust to adsorption of Li atoms. Fitting to the Hall conductivity data reveals that there exist two types of bulk carriers: those for which the carrier density is insensitive to Li adsorption, and those whose density decreases during initial Li depositions and then saturates with further Li adsorption. We propose this dependence is due to the gating effect of a Li-adsorption-generated dipole layer at the ZrTe5 surface.

3.
ChemSusChem ; 11(12): 1956-1969, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29603655

ABSTRACT

Detailed understanding of solid-solid interface structure-function relationships is critical for the improvement and wide deployment of all-solid-state batteries. The interfaces between lithium phosphorous oxynitride (LiPON) solid electrolyte material and lithium metal anode, and between LiPON and Lix CoO2 cathode, have been reported to generate solid-electrolyte interphase (SEI)-like products and/or disordered regions. Using electronic structure calculations and crystalline LiPON models, we predict that LiPON models with purely P-N-P backbones are kinetically inert towards lithium at room temperature. In contrast, transfer of oxygen atoms from low-energy Lix CoO2 (104) surfaces to LiPON is much faster under ambient conditions. The mechanisms of the primary reaction steps, LiPON structural motifs that readily reacts with lithium metal, experimental results on amorphous LiPON to partially corroborate these predictions, and possible mitigation strategies to reduce degradations are discussed. LiPON interfaces are found to be useful case studies for highlighting the importance of kinetics-controlled processes during battery assembly at moderate processing temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL