Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1362711, 2024.
Article in English | MEDLINE | ID: mdl-38586454

ABSTRACT

Objective: Fiber-free diet impairs intestinal and colonic health in mice, in parallel with a reduction in glucagon like peptide-1 (GLP-1) levels. Endogenous GLP-1 is important for intestinal growth and maintenance of the intestinal integrity. We aimed to investigate whether fiber-free diet reduces luminal content of metabolites which, upon supplementation, could increase GLP-1 secretion and restore the adverse effects of fiber-free diet. Methods: Untargeted metabolomics (LC-MS) was performed on colonic content of mice fed a fiber-free diet, identifying a metabolite of particular interest: indole-3-carboxyaldehyde (I3A). We exposed cultured GLUTag cells to I3A, and measured cumulative GLP-1 secretion. Isolated colon perfusions were performed in male C57BL/6JRj mice and Wistar rats. I3A was administered luminally or vascularly, and GLP-1 was measured in portal vein effluent. Finally, female C57BL/6JRJ mice were fed chow or fiber-free diet, with I3A or vehicle by oral gavage. After 10 days, plasma GLP-1 (ELISA) and intestinal permeability (FITC-dextran) were measured, animals were sacrificed and organs removed for histology. Results: Mice fed a fiber-free diet had significantly lower I3A in their colonic content compared to a control diet (7883 ± 3375 AU, p=0.04). GLP-1 secretion from GLUTag cells was unchanged after five minutes of exposure to I3A. However, GLP-1 levels increased after 120 minutes of exposure to 1 mM (60% increase, p=0.016) and 5 mM (89% increase, p=0.0025) I3A. In contrast, 48 h exposure to 1 mM decreased GLP-1 secretion (51% decrease, p<0.001) and viability. In isolated perfused mouse and rat colon, I3A applied into the luminal or vascular side did not affect GLP-1 secretion. Mice fed a fiber-free diet tended to weigh less compared to chow fed mice; and the small intestine and colon were significantly smaller. No differences were seen in crypt depth, villus length, mucosal area, and intestinal permeability. Supplementing I3A did not affect body weight, morphology or plasma GLP-1 levels. Conclusions: Fiber-free diet lowered colonic content of I3A in mice. I3A stimulates GLP-1 secretion in vitro, but not in animal studies. Moreover, it has no evident beneficial effect on intestinal health when administered in vivo.


Subject(s)
Glucagon-Like Peptide 1 , Intestine, Small , Rats , Mice , Animals , Male , Female , Rats, Wistar , Mice, Inbred C57BL , Intestine, Small/metabolism , Glucagon-Like Peptide 1/metabolism , Diet
2.
Front Endocrinol (Lausanne) ; 12: 690387, 2021.
Article in English | MEDLINE | ID: mdl-34421821

ABSTRACT

The molecular sensors underlying nutrient-stimulated GLP-1 secretion are currently being investigated. Peripheral administration of melanocortin-4 receptor (MC4R) agonists have been reported to increase GLP-1 plasma concentrations in mice and humans but it is unknown whether this effect results from a direct effect on the GLP-1 secreting L-cells in the intestine, from other effects in the intestine or from extra-intestinal effects. We investigated L-cell expression of MC4R in mouse and human L-cells by reanalyzing publicly available RNA sequencing databases (mouse and human) and by RT-qPCR (mouse), and assessed whether administration of MC4R agonists to a physiologically relevant gut model, isolated perfused mouse and rat small intestine, would stimulate GLP-1 secretion or potentiate glucose-stimulated secretion. L-cell MC4R expression was low in mouse duodenum and hardly detectable in the ileum and MC4R expression was hardly detectable in human L-cells. In isolated perfused mouse and rat intestine, neither intra-luminal nor intra-arterial administration of NDP-alpha-MSH, a potent MC4R agonist, had any effect on GLP-1 secretion (P ≥0.98, n = 5-6) from the upper or lower-half of the small intestine in mice or in the lower half in rats. Furthermore, HS014-an often used MC4R antagonist, which we found to be a partial agonist-did not affect the glucose-induced GLP-1 response in the rat, P = 0.62, n = 6). Studies on transfected COS7-cells confirmed bioactivity of the used compounds and that concentrations employed were well within in the effective range. Our combined data therefore suggest that MC4R-activated GLP-1 secretion in rodents either exclusively occurs in the colon or involves extra-intestinal signaling.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Intestine, Small/metabolism , L Cells/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , COS Cells , Chlorocebus aethiops , Databases, Factual , Humans , Intestine, Small/drug effects , L Cells/drug effects , Male , Mice , Rats , Rats, Wistar , Receptor, Melanocortin, Type 4/agonists , Signal Transduction/drug effects , alpha-MSH/pharmacology
3.
Int J Obes (Lond) ; 44(9): 1859-1871, 2020 09.
Article in English | MEDLINE | ID: mdl-32015474

ABSTRACT

OBJECTIVES: Gastrointestinal hormones contribute to the beneficial effects of Roux-en-Y gastric bypass surgery (RYGB) on glycemic control. Secretin is secreted from duodenal S cells in response to low luminal pH, but it is unknown whether its secretion is altered after RYGB and if secretin contributes to the postoperative improvement in glycemic control. We hypothesized that secretin secretion increases after RYGB as a result of the diversion of nutrients to more distal parts of the small intestine, and thereby affects islet hormone release. METHODS: A specific secretin radioimmunoassay was developed, evaluated biochemically, and used to quantify plasma concentrations of secretin in 13 obese individuals before, 1 week after, and 3 months after RYGB. Distribution of secretin and its receptor was assessed by RNA sequencing, mass-spectrometry and in situ hybridization in human and rat tissues. Isolated, perfused rat intestine and pancreas were used to explore the molecular mechanism underlying glucose-induced secretin secretion and to study direct effects of secretin on glucagon, insulin, and somatostatin secretion. Secretin was administered alone or in combination with GLP-1 to non-sedated rats to evaluate effects on glucose regulation. RESULTS: Plasma postprandial secretin was more than doubled in humans after RYGB (P < 0.001). The distal small intestine harbored secretin expressing cells in both rats and humans. Glucose increased the secretion of secretin in a sodium-glucose cotransporter dependent manner when administered to the distal part but not into the proximal part of the rat small intestine. Secretin stimulated somatostatin secretion (fold change: 1.59, P < 0.05) from the perfused rat pancreas but affected neither insulin (P = 0.2) nor glucagon (P = 0.97) secretion. When administered to rats in vivo, insulin secretion was attenuated and glucagon secretion increased (P = 0.04), while blood glucose peak time was delayed (from 15 to 45 min) and gastric emptying time prolonged (P = 0.004). CONCLUSIONS: Glucose-sensing secretin cells located in the distal part of the small intestine may contribute to increased plasma concentrations observed after RYGB. The metabolic role of the distal S cells warrants further studies.


Subject(s)
Enteroendocrine Cells , Gastric Bypass , Glucose/metabolism , Intestine, Small/cytology , Animals , Enteroendocrine Cells/metabolism , Enteroendocrine Cells/physiology , Male , Postprandial Period/physiology , Rats , Rats, Wistar
4.
Physiol Rep ; 8(2): e14352, 2020 01.
Article in English | MEDLINE | ID: mdl-31984675

ABSTRACT

Gastrin and cholecystokinin (CCK) are hormones released from endocrine cells in the antral stomach (gastrin), the duodenum, and the jejunum (CCK). Recent reports, based on secretion experiments in an enteroendocrine cell line (NCI-H716) and gastrin receptor expression in proglucagon-expressing cells from the rat colon, suggested that gastrin could be a regulator of glucagon-like peptide-1 (GLP-1) secretion. To investigate these findings, we studied the acute effects of CCK-8 (a CCK1/CCK2 (gastrin) receptor agonist) and gastrin-17 (a CCK2(gastrin) receptor agonist) in robust ex vivo models: the isolated perfused rat small intestine and the isolated perfused rat colon. Small intestines from Wistar rats (n = 6), were perfused intraarterially over 80 min. During the perfusion, CCK (1 nmol/L) and gastrin (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. Colons from Wistar rats (n = 6) were perfused intraarterially over 100 min. During the perfusion, CCK (1 nmol/L), vasoactive intestinal peptide (VIP) (10 nmol/L), and glucose-dependent insulinotropic polypeptide (GIP) (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. In the perfused rat small intestines neither CCK nor gastrin stimulated the release of GLP-1 or neurotensin. In the perfused rat colon, neither CCK or VIP stimulated GLP-1 or peptide YY (PYY) release, but GIP stimulated both GLP-1 and PYY release. In both sets of experiments, bombesin, a gastrin-releasing peptide analog, served as a positive control. Our findings do not support the suggestion that gastrin or CCK participate in the acute regulation of intestinal GLP-1 secretion, but that GIP may play a role in the regulation of hormone secretion from the colon.


Subject(s)
Cholecystokinin/pharmacology , Colon/metabolism , Gastrins/pharmacology , Glucagon-Like Peptide 1/metabolism , Intestine, Small/metabolism , Neurotensin/metabolism , Peptide YY/metabolism , Animals , Colon/drug effects , Intestine, Small/drug effects , Male , Rats , Rats, Wistar , Receptor, Cholecystokinin B/agonists , Receptors, Cholecystokinin/agonists , Vasoactive Intestinal Peptide/pharmacology
5.
Physiol Rep ; 7(8): e14056, 2019 04.
Article in English | MEDLINE | ID: mdl-31020803

ABSTRACT

Protein intake robustly stimulates the secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1) but the molecular mechanisms involved are not well understood. In particular, it is unknown whether proteins stimulate secretion by activation of luminal or basolateral sensors. We characterized the mechanisms using a physiologically relevant model - the isolated perfused proximal rat small intestine. Intraluminal protein hydrolysates derived from meat (peptone; 50 mg/mL) increased GLP-1 secretion 2.3-fold (from a basal secretion of 110 ± 28 fmol/min). The sensory mechanisms underlying the response depended on di/tripeptide uptake through Peptide Transporter 1 (PepT1) and subsequent basolateral activation of the amino acid sensing receptor, Calcium-Sensing Receptor (CaSR), since inhibition of PepT1 as well as CaSR both attenuated the peptone-induced GLP-1 response. Supporting this, intraluminal peptones were absorbed efficiently by the perfused intestine (resulting in increased amino acid concentrations in the venous effluent) and infusion of amino acids robustly stimulated GLP-1 secretion. Inhibitors of voltage-gated L-type Ca2+ channels had no effect on secretion suggesting that peptone-mediated GLP-1 secretion is not mediated by L-cell depolarization with subsequent opening of these channels. Specific targeting of CaSR could serve as a target to stimulate the endogenous secretion of GLP-1.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Intestinal Absorption , Peptones/metabolism , Receptors, Calcium-Sensing/metabolism , Amino Acids/metabolism , Animals , Calcium Channels, L-Type/metabolism , Intestinal Mucosa/metabolism , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...