Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406911

ABSTRACT

This review comprehensively covers and analyzes scientific information on plants used in Tanzanian traditional medicine against respiratory diseases. It covers ethnobotanical and ethnopharmacological information extracted from SciFinder, Google Scholar, and Reaxys as well as the literature collected at the Institute of Traditional Medicine in Dar-es-Salaam. Crude extracts and fractions of 133 plant species have literature reports on antimicrobial bioassays. Of these, 16 plant species had a minimum inhibitory activity of MIC ≤ 50 µg/mL. Structurally diverse compounds were reported for 49 plant species, of which 7 had constituents with MIC ≤ 5 µg/mL against various bacteria: Bryophyllum pinnatum (Lam.) Oken, Warburgia ugandensis Sprague, Diospyros mespiliformis Hochst. ex DC., Cassia abbreviata Oliv., Entada abyssinica A. Rich., Strychnos spinosa Lam., and Milicia excelsa (Welw.) C.C. Berg. The low number of antimicrobial active extracts and compounds suggests that antibacterial and antimycobacterial drug discovery needs to have a fresh look at ethnobotanical information, diverting from too reductionist an approach and better taking into account that the descriptions of symptoms and concepts of underlying diseases are different in traditional African and modern Western medicine. Nevertheless, some structurally diverse compounds found in anti-infective plants are highlighted in this review as worthy of detailed study and chemical modification.

2.
Amino Acids ; 53(7): 1105-1122, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34106335

ABSTRACT

Free amino acids (FAAs), the major constituents of the natural moisturizing factor (NMF), are very important for maintaining the moisture balance of human skin and their deficiency results in dry skin conditions. There is a great interest in the identification and use of nature-based sources of these molecules for such cosmeceutical applications. The objective of the present study was, therefore, to investigate the FAA contents of selected Ethiopian plant and fungi species; and select the best sources so as to use them for the stated purpose. About 59 different plant species and oyster mushroom were included in the study and the concentrations of 27 FAAs were analyzed. Each sample was collected, lyophilized, extracted using aqueous solvent, derivatized with Fluorenylmethoxycarbonyl chloride (Fmoc-Cl) prior to solid-phase extraction and quantified using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC-ESI-MS/MS) system. All the 27 FAAs were detected in most of the samples. The dominant FAAs that are part of the NMF were found at sufficiently high concentration in the mushroom and some of the plants. This indicates that FAAs that could be included in the preparations for the management of dry skin condition can be obtained from a single natural resource and the use of these resources for the specified purpose have both economic and therapeutic advantage in addition to fulfilling customer needs.


Subject(s)
Amino Acids/metabolism , Cosmeceuticals/metabolism , Fungi/metabolism , Plants/metabolism , Skin/metabolism , Amino Acids/analysis , Chromatography, Liquid , Cosmeceuticals/analysis , Humans , Tandem Mass Spectrometry
3.
Eng Life Sci ; 18(7): 425-433, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32624923

ABSTRACT

The application of spent yeast for biogas production has been studied only in the context of breweries so far. This study is focused on the anaerobic digestion of concentrated yeast biomass (CYB), being a by-product of citric acid biosynthesis. Two experimental set-ups were used in order to test CYB as a mono-substrate and co-substrate for closing the loop in accordance with the 'bioeconomy' approach. The results show that CYB allows for obtaining a high biogas yield, with a maximum of 1.45 m3 N/kgVS produced when CYB was used as a mono-substrate. The average methane concentration was 66 ± 4%. However, anaerobic digestion of CYB alone was difficult to perform because of a tendency for over-acidification, meaning that the maximum possible organic loading rate was 1 kg/(m3*d). Repeated clogging of tubes with coagulated biomass also disturbed continuous feeding. In contrast, the co-digestion of CYB with waste frying fat at a ratio of 1:20 showed stable operation during a 70-day fermentation period. The biogas yield using the substrate mixture was 1.42 m3/kgVS at an organic loading rate of 2 kg/(m3*d). The methane concentration reached 67 ± 4% and the acetate concentration did not exceed 30 mg/L during the entire fermentation.

4.
Eng Life Sci ; 18(7): 492-497, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32624930

ABSTRACT

Aquatic macrophytes are important components of aquatic habitats. However, the overgrowth of aquatic plants can cause severe problems for the management of bodies of water. As a result, these plants must be removed and disposed of as waste. However, the usage of this biomass as a substrate in biogas plants would appear to be more beneficial. The present study shows the advantages and barriers to the use of harvested aquatic biomass for energy production in Germany. The results cover several aspects of this issue, such as the question of biomass potential, the quality of the harvested aquatic plants, and ensiling for the purpose of conservation for anaerobic digestion. In addition, the social aspects of the de-weeding in bodies of water are discussed.

5.
Bioresour Technol ; 245(Pt A): 216-224, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28892694

ABSTRACT

The effect of ensiling fermentation and mechanical pretreatment on the methane yield of lignocellulosic biomass was investigated in order to determine the optimum pretreatment conditions for biogas production. Wheat straw was treated using the following techniques: mechanical disintegration by chopping and extruder-grinding to particle sizes of 2.0 and 0.2cm, respectively, and ensiling by 30% and 45% total solids with addition of enzymatic, chemical and biological silage additives individually and in combination. The total and volatile solid content, biochemical methane potential and products of silage fermentation of 32 variants were tested. The results indicate that the methane potential increased by 26% (from 179 to 244mLCH4g-1VS) by reducing particle size. The maximum methane potential of 275mLCH4g-1VS was obtained from silage with 30% total solids and extruder grinding. However, the effect of the addition of silage additives on the methane potential was limited.


Subject(s)
Biofuels , Silage , Fermentation , Methane , Particle Size , Triticum
6.
Waste Manag ; 41: 39-49, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25857422

ABSTRACT

Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes.


Subject(s)
Biofuels/analysis , Bioreactors , Waste Management/methods , Anaerobiosis
7.
Bioresour Technol ; 178: 270-277, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25446785

ABSTRACT

The use of sugar beet in anaerobic digestion (AD) during biogas production can lead to process upsets such as excessive foaming in fermenters. In the present study, foam formation in sugar beet-fed digestates was studied in foaming tests. The increasing disintegration grade of sugar beet was observed to have a promoting effect on foaming in the digestate but did not affect the biogas yield. Chemical analysis of foam and digestate from sugar beet silage AD showed high concentrations of pectin, other carbohydrates and N-containing substances in the foam. Both pectin and sucrose showed little foaming in AD. Nevertheless, sucrose and calcium chloride had a promoting effect on foaming for pectin AD. Salts of divalent ions also enhanced the foam intensity in the case of sugar beet silage AD, whereas ammonium chloride and urea had a lessening effect on sugar beet-based foaming.


Subject(s)
Beta vulgaris/chemistry , Biofuels , Biotechnology/methods , Anaerobiosis , Batch Cell Culture Techniques , Bioreactors/microbiology , Calcium Compounds/chemistry , Cations , Fermentation , Methane/biosynthesis , Oxides/chemistry , Pectins/analysis , Silage , Sucrose/analysis , Urea/chemistry
8.
Appl Microbiol Biotechnol ; 93(4): 1695-702, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22080330

ABSTRACT

We report the study of the dynamics of substrate utilization by the genetic modified strain Yarrowia lipolytica H222-S4(p67ICL1) T5. In contrast to its wild-type equivalent, this recombinant strain is able to excrete the sucrose cleaving enzyme invertase. Both the sucrose degradation rate and the glucose and fructose consumption rate have been investigated. In all experiments, satisfied amounts of invertase were produced so that all sucrose was cleaved into its monomers. While glucose and fructose as sole carbon sources were consumed with the same uptake rate, a clear preference for glucose uptake was detected in cultivations with sucrose as sole carbon source or mixed substrates when compared with fructose. Nevertheless, no real diauxie could be observed because of partly simultaneous consumption of both monosaccharides. Fructose being present in the cultivation medium at the beginning of the fermentation led to the retardation of glucose uptake. This effect was observed for various fructose starting concentrations in the range of 5-85 g/l.


Subject(s)
Metabolic Engineering , Sucrose/metabolism , Yarrowia/growth & development , Yarrowia/metabolism , beta-Fructofuranosidase/metabolism , Carbon/metabolism , Culture Media/chemistry , Fructose/metabolism , Glucose/metabolism , Organisms, Genetically Modified , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Yarrowia/enzymology , Yarrowia/genetics , beta-Fructofuranosidase/genetics
9.
J Biotechnol ; 153(3-4): 133-7, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21458506

ABSTRACT

Biosensor-controlled substrate feeding was used in a citric acid production process with the yeast strain Yarrowia lipolytica H222 with glucose as the carbon source. The application of an online glucose biosensor measurement facilitated the performance of long-time repeated fed-batch process with automated bioprocess control. Ten cycles of repeated fed-batch fermentation were carried out in order to validate both the stability of the microorganism for citric acid production and the robustness of the glucose biosensor in a long-time experiment. In the course of this fermentation with a duration of 553 h, a slight loss of productivity from 1.4 g/(L×h) to 1.1 g/(L×h) and of selectivity for citric acid from 91% to 88% was observed. The glucose biosensor provided 6,227 measurements without any loss of activity.


Subject(s)
Bioreactors/microbiology , Biosensing Techniques/methods , Citric Acid/metabolism , Glucose/metabolism , Yarrowia/metabolism , Fermentation , Glucose/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...