Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 68(9): e2300829, 2024 May.
Article in English | MEDLINE | ID: mdl-38682734

ABSTRACT

Beta-glucans and arabinoxylans are known for their immunostimulatory properties. However, in vivo these have been documented almost exclusively following parenteral administration, underemphasizing oral intake. C57BL/6 mice are fed either a control diet or a diet supplemented with yeast-derived whole ß-glucan particle (yWGP) or with rice-derived arabinoxylan (rice bran-1) at a concentration of 1%, 2.5%, or 5% weight/weight (w/w) for 2 weeks. Thereafter, cells from blood, bone marrow, and spleen are collected for ex vivo stimulation with various microbial stimuli. Dietary intake of yWGP for 2 weeks at concentrations of 1% and 2.5% w/w increases ex vivo cytokine production in mouse blood and bone marrow, whereas 5% w/w yWGP shows no effect. In the spleen, cytokine production remains unaffected by yWGP. At a concentration of 1% w/w, rice bran-1 increases ex vivo cytokine production by whole blood, but 2.5% and 5% w/w cause inhibitory effects in bone marrow and spleen. This study demonstrates that dietary yWGP and rice bran-1 induce immune priming in mouse blood and bone marrow, with the strongest effects observed at 1% w/w. Future human trials should substantiate the efficacy of dietary ß-glucans and arabinoxylans to bolster host immunity, focusing on dose optimization.


Subject(s)
Immunity, Innate , Mice, Inbred C57BL , Oryza , Xylans , beta-Glucans , Animals , Xylans/pharmacology , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , Oryza/chemistry , Immunity, Innate/drug effects , Mice , Spleen/drug effects , Spleen/immunology , Cytokines/metabolism , Male , Dose-Response Relationship, Drug , Dietary Fiber/pharmacology
2.
Curr Res Food Sci ; 8: 100666, 2024.
Article in English | MEDLINE | ID: mdl-38179220

ABSTRACT

Arabinoxylans have been identified for a wide range of purported health-promoting applications, primarily attributed to its immunomodulatory effects. Previously, we have reported the ability of arabinoxylans to induce non-specific memory in innate immune cells, commonly referred to as "trained innate immunity". In the present study, we investigated the effect of particle size on innate immune training and resilience in primary human macrophages as well as in a more physiologically relevant macrophage-intestinal epithelial cell co-culture model. We demonstrated that smaller (>45 & < 90 µm) compared to larger (>90 µm) particle size fractions of rice bran-derived arabinoxylan preparations have a higher enhancing effect on training and resilience in both models. Smaller particle size fractions elevated TNF-α production in primary macrophages and enhanced Dectin-1 receptor activation in reporter cell lines compared to larger particles. Responses were arabinoxylan source specific as only the rice-derived arabinoxylans showed these immune-supportive effects. This particle size-dependent induction of trained immunity was confirmed in the established co-culture model. These findings demonstrate the influence of particle size on the immunomodulatory potential of arabinoxylans, provide further insight into the structure-activity relationship, and offer new opportunities to optimize the immune-enhancing effects of these dietary fibers.

3.
Int J Biol Macromol ; 209(Pt A): 942-950, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35447262

ABSTRACT

Arabinoxylans of various structures and sources have shown to possess the ability to induce a range of immune responses in different cell types in vitro and in vivo. Although the underlying mechanisms remain to be fully established, several studies point towards the involvement of activation of pattern recognition receptors (PRRs). Activation of specific PRRs (i.e., Dectin-1 and CR3) has also been shown to play a key role in the induction of a non-specific memory response in innate immune cells, termed 'trained innate immunity'. In the current study, we assessed whether arabinoxylans are also able to induce trained innate immunity. To this end, a range of arabinoxylan preparations from different sources were tested for their physicochemical properties and their capacity to induce innate immune training and resilience. In human macrophages, rice and wheat-derived arabinoxylan preparations induced training and/or resilience effects, the extent depending on fiber particle size and solubility. Using a Dectin-1 antagonist or a CR3 antibody, it was demonstrated that arabinoxylan-induced trained immunity in macrophages is mainly dependent on Dectin-1b. These findings build on previous observations showing the immunomodulatory potential of arabinoxylans as biological response modifiers and open up promising avenues for their use as health promoting ingredients.


Subject(s)
Immunity, Innate , Lectins, C-Type , Macrophages , Xylans , Humans , Lectins, C-Type/metabolism , Macrophages/metabolism , Receptors, Pattern Recognition , Xylans/pharmacology
4.
Front Immunol ; 12: 672796, 2021.
Article in English | MEDLINE | ID: mdl-34149707

ABSTRACT

Beta-glucans enable functional reprogramming of innate immune cells, a process defined as "trained immunity", which results in enhanced host responsiveness against primary (training) and/or secondary infections (resilience). Trained immunity holds great promise for promoting immune responses in groups that are at risk (e.g. elderly and patients). In this study, we modified an existing in vitro model for trained immunity by actively inducing monocyte-to-macrophage differentiation using M-CSF and applying continuous exposure. This model reflects mucosal exposure to ß-glucans and was used to study the training effects of a variety of soluble or non-soluble ß-glucans derived from different sources including oat, mushrooms and yeast. In addition, trained immunity effects were related to pattern recognition receptor usage, to which end, we analyzed ß-glucan-mediated Dectin-1 activation. We demonstrated that ß-glucans, with different sources and solubilities, induced training and/or resilience effects. Notably, trained immunity significantly correlated with Dectin-1 receptor activation, yet Dectin-1 receptor activation did not perform as a sole predictor for ß-glucan-mediated trained immunity. The model, as validated in this study, adds on to the existing in vitro model by specifically investigating macrophage responses and can be applied to select non-digestible dietary polysaccharides and other components for their potential to induce trained immunity.


Subject(s)
Macrophage Activation/immunology , Macrophages/immunology , beta-Glucans/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Humans , Macrophage Activation/drug effects , Macrophage Colony-Stimulating Factor/immunology , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...