Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Biotechnol Bioeng ; 117(6): 1661-1672, 2020 06.
Article in English | MEDLINE | ID: mdl-32068248

ABSTRACT

The available pneumococcal conjugate vaccines provide protection against only those serotypes that are included in the vaccine, which leads to a selective pressure and serotype replacement in the population. An alternative low-cost, safe and serotype-independent vaccine was developed based on a nonencapsulated pneumococcus strain. This study evaluates process intensification to improve biomass production and shows for the first time the use of perfusion-batch with cell recycling for bacterial vaccine production. Batch, fed-batch, and perfusion-batch were performed at 10 L scale using a complex animal component-free culture medium. Cells were harvested at the highest optical density, concentrated and washed using microfiltration or centrifugation to compare cell separation methods. Higher biomass was achieved using perfusion-batch, which removes lactate while retaining cells. The biomass produced in perfusion-batch would represent at least a fourfold greater number of doses per cultivation than in the previously described batch process. Each strategy yielded similar vaccines in terms of quality as evaluated by western blot and animal immunization assays, indicating that so far, perfusion-batch is the best strategy for the intensification of pneumococcal whole-cell vaccine production, as it can be integrated to the cell separation process keeping the same vaccine quality.


Subject(s)
Batch Cell Culture Techniques/instrumentation , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Animals , Batch Cell Culture Techniques/methods , Biomass , Bioreactors , Equipment Design , Female , Humans , Immunization , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/prevention & control , Streptococcus pneumoniae/cytology
2.
Biotechnol Bioeng, p. 1-12, fev. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2983

ABSTRACT

The available pneumococcal conjugate vaccines provide protection against only those serotypes that are included in the vaccine, which leads to a selective pressure and serotype replacement in the population. An alternative low-cost, safe and serotype-independent vaccine was developed based on a nonencapsulated pneumococcus strain. This study evaluates process intensification to improve biomass production and shows for the first time the use of perfusion-batch with cell recycling for bacterial vaccine production. Batch, fed-batch, and perfusion-batch were performed at 10 L scale using a complex animal component-free culture medium. Cells were harvested at the highest optical density, concentrated and washed using microfiltration or centrifugation to compare cell separation methods. Higher biomass was achieved using perfusion-batch, which removes lactate while retaining cells. The biomass produced in perfusion-batch would represent at least a fourfold greater number of doses per cultivation than in the previously described batch process. Each strategy yielded similar vaccines in terms of quality as evaluated by western blot and animal immunization assays, indicating that so far, perfusion-batch is the best strategy for the intensification of pneumococcal whole-cell vaccine production, as it can be integrated to the cell separation process keeping the same vaccine quality.

3.
Vaccine ; 35(9): 1306-1315, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28161422

ABSTRACT

The pneumococcal whole cell vaccine (PWCV) has been investigated as an alternative to polysaccharide-based vaccines currently in use. It is a non-encapsulated killed vaccine preparation that induces non-capsular antibodies protecting mice against invasive pneumococcal disease (IPD) and reducing nasopharyngeal (NP) carriage via IL-17A activation of mouse phagocytes. Here, we show that PWCV induces antibody and IL-17A production to protect mice against challenge in a fatal aspiration-sepsis model after only one dose. We observed protection even with a boiled preparation, attesting to the stability and robustness of the vaccine. PWCV antibodies were shown to bind to different encapsulated strains, but complement deposition on the pneumococcal surface was observed only on serotype 3 strains; using flow cytometer methodology, variations in PWCV quality, as in the boiled vaccine, were detected. Moreover, anti-PWCV induces phagocytosis of different pneumococcal serotypes by murine peritoneal cells in the presence of complement or IL-17A. These findings suggest that complement and IL-17A may participate in the process of phagocytosis induced by PWCV antibodies. IL-17A can stimulate phagocytic cells to kill pneumococcus and this is enhanced in the presence of PWCV antibodies bound to the bacterial cell surface. Our results provide further support for the PWCV as a broad-range vaccine against all existing serotypes, potentially providing protection for humans against NP colonization and IPD. Additionally, we suggest complement deposition assay as a tool to detect subtle differences between PWCV lots.


Subject(s)
Complement C3/immunology , Interleukin-17/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Animals , Binding Sites, Antibody , Flow Cytometry , Mice , Nasopharynx/microbiology , Opsonin Proteins/immunology , Phagocytosis , Pneumococcal Vaccines/administration & dosage , Sepsis/immunology , Sepsis/microbiology , Sepsis/prevention & control , Serogroup , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL