Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 234: 107291, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37734456

ABSTRACT

This study was conducted to extract the essential oils (EOs) of Caccinia macranthera identify their phytochemicals, evaluate their phytotoxicity, antimicrobial activity and enzyme inhibition effects using in silico molecular docking technique. EOs of aerial parts, seeds, and roots of C. macranthera were extracted and analyzed via Gas chromatography-Mass Spectrometry. The antibacterial activity of EOs were determined on nine microorganisms via disk diffusion and microbroth dilution assays. In addition, the allelopathic properties of EOs were investigated by calculating the IC50s for inhibition of germination, seedling length and seedling weight growth of Cuscuta campestris seeds. In order to assess the possible inhibitory effect of major components of C. macranthera EOs on enzymes inhibiting germination and plant growth, molecular docking was employed against the glutamine synthetase (GS), acetohydroxyacid synthetase (AHAS), and 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzymes. The main compounds of EOs from aerial parts, seeds, and roots EOs were dihydrocarveol (29.5%), Trimethyl-2-Pentadecanone (13.6%), and Palmitic acid (16.8%), respectively. The maximum antibacterial effect was related to the aerial parts EO against Staphylococcus epidermidis. Phytotoxicity analysis exhibited a concentration-dependent increase (p ≤ 0.05) activity. The aerial parts EO demonstrated a substantial allelopathy effect, with IC50 values of 0.22 ± 0.026, 0.39 ± 0.021, and 0.20 ± 0.025 mg/mL, respectively, on inhibitory germination, seedling length and seedling weight growth of Cuscuta campestris seeds. Molecular docking analyzes showed that Oleic acid was suitable for dynamic stabilization of HPPD (-6.552 kJ/mol) and GS (-7.265 kJ/mol) and Eupatoriochromene had the inhibitory potential against AHAS, with docking score of -4.189 kJ/mol. The current research demonstrated that C. macranthera EOs from its aerial parts have an acceptable phytotoxic activity against Cuscuta campestris weed. The major components of EOs, Oleic acid and Eupatoriochromene, presented the strongest binding with HPPD, GS, and AHAS active sites causing disturbance in germination, photosynthesis and weed growth suggesting it as a natural herbicide for controlling the weeds.

2.
J Gastrointest Cancer ; 52(1): 99-105, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31823219

ABSTRACT

PURPOSE: Colorectal cancer (CRC) is one of the most lethal and prevalent cancers throughout the world. Despite the remarkable advance in the field, drug resistance still remains as an unresolved problem in cancer. Hence, finding effective compounds with minimal side effects to fight cancer is of central priority. Herbal products have been traditionally used to prevent and treat a variety of diseases. METHODS: In the present study, the antitumor effect of Terminalia catappa plant ethanolic extract (TCE) was assessed on SW480 CRC model cell line. In this regard, effects of TCE were evaluated on the proliferation, apoptosis, and migration of SW480 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Annexin V/PI flow cytometry, and scratch tests, respectively. Furthermore, changes in the expression of genes involved in these events including Bax, Bcl-2, Caspase 3, Caspase 8, Caspase 9, MMP-13, miR-21, and miR-34a were measured by quantitative real-time PCR (qRT-PCR). RESULTS: According to the MTT results, TCE reduced the proliferation of SW480 cells significantly. The flow cytometry test also revealed a notable rate of apoptosis induction after TCE treatment. An inhibitory effect on cell migration was also evident in scratch test. Expression patterns of the assessed genes also changed subsequent to TCE treatment. CONCLUSION: The results of this study indicated that T. catappa could be considered as a potential source of anticancer compounds and a candidate for further investigations.


Subject(s)
Colorectal Neoplasms/drug therapy , Plant Extracts/pharmacology , Terminalia/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Leaves/chemistry
3.
Res Pharm Sci ; 11(2): 113-9, 2016.
Article in English | MEDLINE | ID: mdl-27168750

ABSTRACT

In the present study, the chemical composition of the essential oil and methanol (MeOH) extract of aerials of E. azerbaijanica were identified. Furthermore, the free radical scavenging properties of the volatile oil as well as the MeOH extract of the plant were assessed. The essential oil of the air-dried aerial parts was obtained by hydro-distillation using a Clevenger-type apparatus. The oil was then analyzed by gas chromatography-mass spectrometry and gas chromatography with flame ionization detector. Soxhlet extraction was performed on the aerial parts using n-hexane, dichloromethane and MeOH. The MeOH extract was then subjected to solid-phase extraction using a C18 Sep-Pak cartridge. Isolation and structural elucidation of the pure components was accomplished by high-performance liquid chromatography and spectroscopic methods (UV, (1)H-NMR). The free radical scavenging properties were determined by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. A total of 59 components representing 95.9% of the oil constituents were identified which were primarily characterized as terpenoids or aliphatic skeletons. The major components of the oil were hexahydrofarnesyl acetone (27.1%), 2-methyl-6-propyl-dodecane (16.4%) and tricosane (9.3%). One flavonoid (luteolin-7-O-rutinoside) and one phenylethanoid (verbascoside) were also isolated and identified from the MeOH extract. The results of DPPH assays showed that the essential oil of E. azerbaijanica possessed weak free radical scavenging activity whereas the MeOH extract and its pure constituents showed significant scavenging activities in comparison with positive controls.

SELECTION OF CITATIONS
SEARCH DETAIL
...