Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceutics ; 13(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34834381

ABSTRACT

Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical, chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein containing in situ synthesized AuNPs has been successfully used as an effective and completely biocompatible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages, few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain (L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines, showing more than seven times more uptake than apoferritin.

2.
Mater Sci Eng C Mater Biol Appl ; 128: 112269, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474828

ABSTRACT

Gold nanoparticles (GNP) are tunable nanomaterials that can be used to develop rational therapeutic inhibitors against the formation of pathological aggregates of proteins. In the case of the pathological aggregation of the amyloid-ß protein (Aß), the shape of the GNP can slow down or accelerate its aggregation kinetics. However, there is a lack of elementary knowledge about how the curvature of GNP alters the interaction with the Aß peptide and how this interaction modifies key molecular steps of fibril formation. In this study, we analysed the effect of flat gold nanoprisms (GNPr) and curved gold nanospheres (GNS) on in vitro Aß42 fibril formation kinetics by using the thioflavin-based kinetic assay and global fitting analysis, with several models of aggregation. Whereas GNPr accelerate the aggregation process and maintain the molecular mechanism of aggregation, GNS slow down this process and modify the molecular mechanism to one of fragmentation/secondary nucleation, with respect to controls. These results can be explained by a differential interaction between the Aß peptide and GNP observed by Raman spectroscopy. While flat GNPr expose key hydrophobic residues involved in the Aß peptide aggregation, curved GNS hide these residues from the solvent. Thus, this study provides mechanistic insights to improve the rational design of GNP nanomaterials for biomedical applications in the field of amyloid-related aggregation.


Subject(s)
Gold , Metal Nanoparticles , Amyloid , Amyloid beta-Peptides , Peptide Fragments
3.
J Inorg Biochem ; 206: 111016, 2020 05.
Article in English | MEDLINE | ID: mdl-32142941

ABSTRACT

Ferritin is a globular hollow protein that acts as the major iron storage protein across living organisms. The 8 nm-diameter internal cavity of ferritin has been used as a nanoreactor for the synthesis of various metallic nanoparticles different to iron oxides. For this purpose, ferritin is incubated in solution with metallic ions that enter the cavity through its natural channels. Then, these ions are subjected to a reduction step to obtain highly monodisperse metallic nanoparticles, with enhanced stability and biocompatibility provided by the ferritin structure. Potential biomedical applications of ferritin-nanoparticle complex will require the use of human ferritin to provide a safer and low-risk alternative for the delivery of metallic nanoparticles into the body. However, most of the reported protocols for metallic nanoparticles synthesis uses horse spleen ferritin as nanocontainer. Previous studies have acknowledged technical difficulties with recombinant human ferritin during the synthesis of metallic nanoparticles, like protein precipitation, which is translated into low recovery yields. In this study, we tested a novel photochemical reduction method for silver nanoparticle synthesis in human recombinant ferritin and compared it with the traditional chemical reduction method. The results show that photoreduction of silver ions inside ferritin cavity provides a universal method for silver nanoparticle synthesis in both recombinant human ferritin homopolymers (Light and Heavy ferritin). Additionally, we report important parameters that account for the efficiency of the method, such as ferritin recovery yield (~60%) and ferritin­silver nanoparticle yield (34% for H-ferritin and 17% for L-ferritin).


Subject(s)
Apoferritins/chemistry , Metal Nanoparticles/chemistry , Photochemistry , Recombinant Proteins/chemistry , Silver/chemistry , Apoferritins/metabolism , Humans , Recombinant Proteins/metabolism
4.
J Inorg Biochem ; 183: 184-190, 2018 06.
Article in English | MEDLINE | ID: mdl-29279245

ABSTRACT

Ferritin is a globular protein that consists of 24 subunits forming a hollow nanocage structure that naturally stores iron oxyhydroxides. Elimination of iron atoms to obtain the empty protein called apoferritin is the first step to use this organic shell as a nanoreactor for different nanotechnological applications. Different protocols have been reported for apoferritin formation, but some are time consuming, others are difficult to reproduce and protein recovery yields are seldom reported. Here we tested several protocols and performed a complete material characterization of the apoferritin products using size exclusion chromatography, UV-vis spectroscopy, inductively coupled plasma optical emission spectrometry and dynamic light scattering. Our best method removes more than 99% of the iron from loaded holoferritin, recovering 70-80% of the original protein as monomeric apoferritin nanocages. Our work shows that pH conditions of the reduction step and the presence and nature of chelating agents affect the efficiency of iron removal. Furthermore, process conditions also seem to have an influence on the monomer:aggregate proportion present in the product. We also demonstrate that iron contents markedly increase ferritin absorbance at 280nm. The influence of iron contents on absorbance at 280nm precludes using this simple spectrophotometric measure for protein determination in ferritin­iron complexes. Apoferritin produced following our protocol only requires readily-available, cheap and biocompatible reagents, which makes this process standardizable, scalable and applicable to be used for in vivo applications of ferritin derivatives as well as nanotechnological and biotechnological uses.


Subject(s)
Apoferritins/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Chromatography, Gel , Hydrogen-Ion Concentration , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL