Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
2.
Int J Mol Sci ; 24(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37175941

ABSTRACT

A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.


Subject(s)
Mitochondria , Oxidative Stress , Mice , Animals , Mitochondria/genetics , Mitochondria/metabolism , Cell Proliferation , Serine/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Mammals/metabolism
3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142122

ABSTRACT

Cancer treatment with ionizing radiation (IR) is a well-established and effective clinical method to fight different types of tumors and is a palliative treatment to cure metastatic stages. Approximately half of all cancer patients undergo radiotherapy (RT) according to clinical protocols that employ two types of ionizing radiation: sparsely IR (i.e., X-rays) and densely IR (i.e., protons). Most cancer cells irradiated with therapeutic doses exhibit radio-induced cytotoxicity in terms of cell proliferation arrest and cell death by apoptosis. Nevertheless, despite the more tailored advances in RT protocols in the last few years, several tumors show a relatively high percentage of RT failure and tumor relapse due to their radioresistance. To counteract this extremely complex phenomenon and improve clinical protocols, several factors associated with radioresistance, of both a molecular and cellular nature, must be considered. Tumor genetics/epigenetics, tumor microenvironment, tumor metabolism, and the presence of non-malignant cells (i.e., fibroblast-associated cancer cells, macrophage-associated cancer cells, tumor-infiltrating lymphocytes, endothelial cells, cancer stem cells) are the main factors important in determining the tumor response to IR. Here, we attempt to provide an overview of how such factors can be taken advantage of in clinical strategies targeting radioresistant tumors.


Subject(s)
Neoplasms , Radiation Tolerance , Apoptosis , Cell Line, Tumor , Endothelial Cells/metabolism , Humans , Neoplasms/metabolism , Protons , Tumor Microenvironment
4.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638848

ABSTRACT

The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.


Subject(s)
DNA Damage , Genomics/methods , Gravity, Altered , Radiation Injuries/genetics , Weightlessness Simulation/methods , Weightlessness , Adaptation, Physiological , Humans , Radiation Protection/methods , Space Flight/methods
5.
Mutat Res Rev Mutat Res ; 787: 108346, 2021.
Article in English | MEDLINE | ID: mdl-34083038

ABSTRACT

DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.


Subject(s)
DNA Damage/physiology , DNA Replication/physiology , Genomic Instability/physiology , Animals , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/physiology , DNA Damage/genetics , DNA Replication/genetics , Genomic Instability/genetics , Humans
6.
ACS Appl Mater Interfaces ; 12(39): 44074-44087, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32876432

ABSTRACT

The room-temperature controlled crystallization of monodispersed ZnS nanoparticles (average size of 5 nm) doped with luminescent ions (such as Mn2+, Eu3+, Sm3+, Nd3+, and Yb3+) was achieved via a microfluidic approach. The preparation did not require any stabilizing ligands or surfactants, minimizing potential sources of impurities. The synthesized nanomaterials were characterized from a structural (XRD and XAS at lanthanide L3 edges), morphological (TEM), and compositional (XPS, ICP-MS) perspective, giving complementary information on the materials' features. In view of potential applications in the field of optical bioimaging, the optical emission properties of the doped nanoparticles were assessed, and samples showed strong luminescent properties while being less affected by self-quenching mechanisms. Furthermore, in vitro cytotoxicity experiments were conducted, showing no negative effects and evidencing the appeal of the synthesized materials for potential applications in the field of optical bioimaging.


Subject(s)
Microfluidic Analytical Techniques , Nanoparticles/chemistry , Optical Imaging , Sulfides/chemistry , Transition Elements/chemistry , Zinc Compounds/chemistry , A549 Cells , Crystallization , Humans , Luminescence , Particle Size , Surface Properties , Tumor Cells, Cultured , X-Ray Absorption Spectroscopy
7.
Front Oncol ; 9: 987, 2019.
Article in English | MEDLINE | ID: mdl-31632918

ABSTRACT

Introduction: Adverse effects of radiotherapy (RT) significantly affect patient's quality of life (QOL). The possibility to identify patient-related factors that are associated with individual radiosensitivity would optimize adjuvant RT treatment, limiting the severity of normal tissue reactions, and improving patient's QOL. In this study, we analyzed the relationships between genetic features and toxicity grading manifested by RT patients looking for possible biomarkers of individual radiosensitivity. Methods: Early radiation toxicity was evaluated on 143 oncological patients according to the Common Terminology Criteria for Adverse Events (CTCAE). An individual radiosensitivity (IRS) index defining four classes of radiosensitivity (highly radiosensitive, radiosensitive, normal, and radioresistant) was determined by a G2-chromosomal assay on ex vivo irradiated, patient-derived blood samples. The expression level of 15 radioresponsive genes has been measured by quantitative real-time PCR at 24 h after the first RT fraction, in blood samples of a subset of 57 patients, representing the four IRS classes. Results: By applying univariate and multivariate statistical analyses, we found that fatigue was significantly associated with IRS index. Interestingly, associations were detected between clinical radiation toxicity and gene expression (ATM, CDKN1A, FDXR, SESN1, XPC, ZMAT3, and BCL2/BAX ratio) and between IRS index and gene expression (BBC3, FDXR, GADD45A, and BCL2/BAX). Conclusions: In this prospective cohort study we found that associations exist between normal tissue reactions and genetic features in RT-treated patients. Overall, our findings can contribute to the identification of biological markers to predict RT toxicity in normal tissues.

8.
Int J Pharm ; 566: 541-548, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31173801

ABSTRACT

The effect of mild hyperthermia (MHT) on nanoparticle (NP) accumulation in rat model liver metastasis and the contribution of neoplastic and non-neoplastic cells were characterized. CdSe/ZnS QD-doped poly(lactic-co-glycolic acid) (PLGA) NPs (155 ±â€¯10 nm) were delivered via the ileocolic vein to metastatic livers 15 min after localized MW irradiation (1 min, 41 °C) or in normothermia (37 °C, NT). Quantitative analysis of tissue sections by confocal fluorescence microscopy 1 h after NP injection showed no NP tumor accumulation in NT. On the contrary, MHT increased NP association with tumor, compared to normal tissue. Counterstaining of specific markers showed that the MHT effect is due to an increased NP endocytosis not only by tumor cells, but also by hepatocytes at the growing tumor edge and, to a minor extent, by tumor-associated macrophages. High-NP capturing hepatocytes, close to the tumor, may be a relevant phenomenon in MHT-induced increased targeting of NPs to liver metastasis, influencing their therapeutic efficacy.


Subject(s)
Drug Carriers/administration & dosage , Hepatocytes/metabolism , Hyperthermia, Induced , Liver Neoplasms/metabolism , Nanoparticles/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Animals , Cadmium Compounds/administration & dosage , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Kupffer Cells/metabolism , Liver Neoplasms/secondary , Macrophages/metabolism , Male , Rats , Selenium Compounds/administration & dosage , Sulfides/administration & dosage , Zinc Compounds/administration & dosage
9.
Biochim Biophys Acta Gene Regul Mech ; 1861(12): 1102-1118, 2018 12.
Article in English | MEDLINE | ID: mdl-30389599

ABSTRACT

DNA-Double strand breaks (DSBs) generated by radiation therapy represent the most efficient lesions to kill tumor cells, however, the inherent DSB repair efficiency of tumor cells can cause cellular radioresistance and impact on therapeutic outcome. Genes of DSB repair represent a target for cancer therapy since their down-regulation can impair the repair process making the cells more sensitive to radiation. In this study, we analyzed the combination of ionizing radiation (IR) along with microRNA-mediated targeting of genes involved in DSB repair to sensitize human non-small cell lung cancer (NSCLC) cells. MicroRNAs are natural occurring modulators of gene expression and therefore represent an attractive strategy to affect the expression of DSB repair genes. As possible IR-sensitizing targets genes we selected genes of homologous recombination (HR) and non-homologous end joining (NHEJ) pathway (i.e. RAD51, BRCA2, PRKDC, XRCC5, LIG1). We examined these genes to determine whether they may be real targets of selected miRNAs by functional and biological validation. The in vivo effectiveness of miRNA treatments has been examined in cells over-expressing miRNAs and treated with IR. Taken together, our results show that hsa-miR-96-5p and hsa-miR-874-3p can directly regulate the expression of target genes. When these miRNAs are combined with IR can decrease the survival of NSCLC cells to a higher extent than that exerted by radiation alone, and similarly to radiation combined with specific chemical inhibitors of HR and NHEJ repair pathway.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA Ligase ATP/genetics , DNA-Activated Protein Kinase/genetics , Gamma Rays , Lung Neoplasms/genetics , MicroRNAs/genetics , Nuclear Proteins/genetics , Rad51 Recombinase/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Repair , Humans , Lung Neoplasms/radiotherapy , Recombination, Genetic
10.
Langmuir ; 34(38): 11534-11543, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30170495

ABSTRACT

Zinc sulfide (ZnS) nanoparticles (NPs) are particularly interesting materials for their electronic and luminescent properties. Unfortunately, their robust and stable functionalization and stabilization, especially in aqueous media, has represented a challenging and not yet completely accomplished task. In this work, we report the synthesis of colloidally stable, photoluminescent and biocompatible core-polymer shell ZnS and ZnS:Tb NPs by employing a water-in-oil miniemulsion (ME) process combined with surface functionalization via catechol-bearing poly-2-methyl-2-oxazoline (PMOXA) of various molar masses. The strong binding of catechol anchors to the metal cations of the ZnS surface, coupled with the high stability of PMOXA against chemical degradation, enable the formation of suspensions presenting excellent colloidal stability. This feature, combined with the assessed photoluminescence and biocompatibility, make these hybrid NPs suitable for optical bioimaging.


Subject(s)
Biocompatible Materials/chemistry , Catechols/chemistry , Luminescent Agents/chemistry , Nanoparticles/chemistry , Polyamines/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , A549 Cells , Biocompatible Materials/chemical synthesis , Biocompatible Materials/toxicity , Catechols/chemical synthesis , Catechols/toxicity , Cell Survival/drug effects , Humans , Luminescence , Luminescent Agents/chemical synthesis , Luminescent Agents/toxicity , Nanoparticles/toxicity , Polyamines/chemical synthesis , Polyamines/toxicity , Sulfides/toxicity , Terbium/chemistry , Zinc Compounds/toxicity
11.
Cell Biol Toxicol ; 33(4): 373-388, 2017 08.
Article in English | MEDLINE | ID: mdl-28466226

ABSTRACT

Many aspects of cellular physiology, including cellular response to genotoxic stress, are related to the circadian rhythmicity induced by the molecular clock. The current study investigated if the cellular response to DNA damage is in relation to endogenous expression levels of the PER2 protein, a key component of the molecular regulatory system that confers rhythmicity in mammalian cells. Human normal fibroblasts (CCD-34Lu) were subjected to serum shock to induce circadian oscillations of the PER2 protein and then irradiated with γ- rays at times corresponding to the trough and peak expression of the PER2 protein. To better examine cellular response to DNA damage, the experiments performed in this study were carried out in non-proliferating CCD-34Lu fibroblasts in order to maintain the cell and circadian cycles separated while they were being exposed to genotoxic stress. Study results demonstrated that clonogenic cell survival, double-strand break repair kinetics, and TP53 protein levels were affected in the cells irradiated at the trough than in those irradiated at peak expression of the PER2 protein.


Subject(s)
Circadian Rhythm/radiation effects , DNA Damage , Fibroblasts/radiation effects , Period Circadian Proteins/metabolism , Cells, Cultured , DNA/metabolism , DNA/radiation effects , DNA Repair , Fibroblasts/metabolism , Fibroblasts/pathology , Gamma Rays , Humans , Lung/cytology , Lung/metabolism , Lung/pathology , Lung/radiation effects , Period Circadian Proteins/genetics , Radiation, Ionizing , Tumor Suppressor Protein p53/metabolism
12.
Mini Rev Med Chem ; 15(13): 1052-62, 2015.
Article in English | MEDLINE | ID: mdl-26156420

ABSTRACT

MicroRNAs (miRNAs), a recently discovered class of small non-coding RNAs, constitute a promising approach to anti-cancer treatments when they are used in combination with other agents. MiRNAs are evolutionarily conserved non-coding RNAs that negatively regulate gene expression by binding to the complementary sequence in the 3'-untranslated region (UTR) of target genes. MiRNAs typically suppress gene expression by direct association with target transcripts, thus decreasing the expression levels of target proteins. The delivery to cells of synthetic miRNAs that mimic endogenous miRNA targeting genes involved in the DNA-Damage Response (DDR) can perturb the process, making cells more sensitive to chemotherapy or radiotherapy. This review examines how cells respond to combined therapy and it provides insights into the role of miRNAs in targeting the DDR repair pathway when they are used in combination with chemical compounds or ionizing radiation to enhance cellular sensitivity to treatments.


Subject(s)
MicroRNAs/genetics , MicroRNAs/therapeutic use , Neoplasms/genetics , Neoplasms/therapy , Animals , Combined Modality Therapy/methods , DNA Damage , DNA Repair , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/drug therapy , Neoplasms/radiotherapy
13.
Arch Toxicol ; 89(4): 607-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24888373

ABSTRACT

ORganically MOdified SILica (ORMOSIL) nanoparticles (NPs) appear promising carriers for the delivery of drugs to target tissues but concerns on possible cytotoxic effects exist. Here, we studied the in vitro responses to ORMOSIL NPs in different types of human lung cells to determine the effects of polyethylene glycol (PEG) coating on NP cytotoxicity. Non-PEG NPs caused a concentration-dependent decrease of viability of all types of cells, while PEG NPs induced deleterious effects and death in carcinoma alveolar type II A549 cells but not in CCD-34Lu fibroblasts and NCI-H2347 adenocarcinoma cells. Reactive oxygen species were detected in cells incubated with PEG NPs, but their deactivation by superoxide dismutase and catalase did not protect A549 cells from death, suggesting that the oxidative stress was not the main determinant of cytotoxicity. Only in A549 cells PEG NPs modulated the transcription of genes involved in inflammation, signal transduction and cell death. Transmission electron microscopy evidenced a unique intracellular localization of PEG NPs in the lamellar bodies of A549 cells, which could be the most relevant factor leading to cytotoxicity by reducing the production of surfactant proteins and by interfering with the pulmonary surfactant system.


Subject(s)
Drug Carriers/pharmacology , Lung/drug effects , Nanoparticles/chemistry , Polyethylene Glycols/pharmacology , Siloxanes/pharmacology , Cell Culture Techniques , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Lung/metabolism , Lung/pathology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Pulmonary Surfactants/metabolism , Reactive Oxygen Species/metabolism , Siloxanes/chemistry , Siloxanes/pharmacokinetics , Surface Properties , Transcriptome/drug effects
14.
Int J Environ Res Public Health ; 11(9): 8867-90, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25170680

ABSTRACT

Silica (SiO2) nanoparticles (NPs) have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30) having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.


Subject(s)
Nanoparticles/toxicity , Silicon Dioxide/toxicity , Transcription, Genetic/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Particle Size , Real-Time Polymerase Chain Reaction
15.
J Med Chem ; 57(4): 1403-15, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24456407

ABSTRACT

Cationic antimicrobial peptides (CAMPs) and photodynamic therapy (PDT) are attractive tools to combat infectious diseases and to stem further development of antibiotic resistance. In an attempt to increase the efficiency of bacteria inactivation, we conjugated a PDT photosensitizer, cationic or neutral porphyrin, to a CAMP, buforin or magainin. The neutral and hydrophobic porphyrin, which is not photoactive per se against Gram-negative bacteria, efficiently photoinactivated Escherichia coli after conjugation to either buforin or magainin. Conjugation to magainin resulted in the considerable strengthening of the cationic and hydrophilic porphyrin's interaction with the bacterial cells, as shown by the higher bacteria photoinactivation activity retained after washing the bacterial suspension. The porphyrin-peptide conjugates also exhibited strong interaction capability as well as photoactivity toward eukaryotic cells, namely, human fibroblasts. These findings suggest that these CAMPs have the potential to carry drugs and other types of cargo inside mammalian cells similar to cell-penetrating peptides.


Subject(s)
Magainins/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Porphyrins/chemistry , Amino Acid Sequence , Circular Dichroism , Eukaryotic Cells/drug effects , Gram-Negative Bacteria/drug effects , Molecular Sequence Data , Photochemotherapy , Photosensitizing Agents/chemistry , Spectrophotometry, Ultraviolet
16.
Int J Mol Sci ; 14(9): 17881-96, 2013 Sep 02.
Article in English | MEDLINE | ID: mdl-24002026

ABSTRACT

Perturbations during the cell DNA-Damage Response (DDR) can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs), small non-coding RNAs that act as post-transcriptional regulators of gene expression. The oncogenic miR-27a is over-expressed in several tumors and, in the present study, we investigated its interaction with ATM, the gene coding for the main kinase of DDR pathway. Experimental validation to confirm miR-27a as a direct regulator of ATM was performed by site-direct mutagenesis of the luciferase reporter vector containing the 3'UTR of ATM gene, and by miRNA oligonucleotide mimics. We then explored the functional miR-27a/ATM interaction under biological conditions, i.e., during the response of A549 cells to ionizing radiation (IR) exposure. To evaluate if miR-27a over-expression affects IR-induced DDR activation in A549 cells we determined cell survival, cell cycle progression and DNA double-strand break (DSB) repair. Our results show that up-regulation of miR-27a promotes cell proliferation of non-irradiated and irradiated cells. Moreover, increased expression of endogenous mature miR-27a in A549 cells affects DBS rejoining kinetics early after irradiation.


Subject(s)
Gamma Rays/adverse effects , 3' Untranslated Regions/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line , DNA Damage/radiation effects , Humans , MicroRNAs/genetics
17.
PLoS One ; 8(7): e69061, 2013.
Article in English | MEDLINE | ID: mdl-23874869

ABSTRACT

This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5-24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.


Subject(s)
Cell Cycle/genetics , DNA Damage , DNA End-Joining Repair , Homologous Recombination , Recombinational DNA Repair , Cell Line , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
18.
Anal Bioanal Chem ; 404(6-7): 1789-802, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23053168

ABSTRACT

We analyzed the influence of the kind of cytotoxicity test and its application modality in defining the level of hazard of the in vitro exposures to nanostructures. We assessed the cytotoxicity induced by two different Ludox® silica nanoparticles (NPs), AS30 and SM30, on three human cell lines, CCD-34Lu, A549, and HT-1080. Dynamic light scattering measurements showed particle agglomeration when NPs are diluted in culture medium supplemented with fetal calf serum. We examined the impact of such particle aggregation on the cytotoxicity by exposing the cells to NPs under different treatment modalities: short incubation (2 h) in serum-free medium or long incubation (24-72 h) in serum-containing medium. Under this last modality, NP suspensions tended to form aggregates and were toxic at concentrations five- to tenfold higher than in serum-free medium. The results of cell survival varied considerably when the long-term clonogenic assay was performed to validate the data of the short-term MTS assay. Indeed, the half maximum effective concentrations (EC(50)) in all the three cell lines were four- to fivefold lower when calculated from the data of clonogenic assay than of MTS. Moreover, the mechanisms of NP toxicity were cell-type-specific, showing that CCD-34Lu are prone to the induction of plasma membrane damages and HT-1080 are prone to DNA double-strand break and apoptosis induction. Taken together, our results demonstrate that the choice of testing strategy and treatment conditions plays an important role in assessing the in vitro toxicity of NPs.


Subject(s)
Nanoparticles/toxicity , Silicon Dioxide/toxicity , Cell Line , Cell Survival/drug effects , Humans , Particle Size
19.
PLoS One ; 7(2): e31293, 2012.
Article in English | MEDLINE | ID: mdl-22347458

ABSTRACT

BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.


Subject(s)
Gene Expression Profiling , Lymphocytes/radiation effects , MicroRNAs/analysis , RNA, Messenger/analysis , Radiation, Ionizing , Weightlessness , Astronauts , DNA Damage , Humans , MicroRNAs/biosynthesis , RNA, Messenger/biosynthesis , Space Flight , Transcriptome
20.
Nanotechnology ; 20(34): 345101, 2009 Aug 26.
Article in English | MEDLINE | ID: mdl-19652275

ABSTRACT

Nanosized objects made of various materials are gaining increasing attention as promising vehicles for the delivery of therapeutic and diagnostic agents for cancer. Photodynamic therapy (PDT) appears to offer a very attractive opportunity to implement drug delivery systems since no release of the sensitizer is needed to obtain the therapeutic effect and the design of the nanovehicle should be much easier. The aim of our study was to investigate the use of organic-modified silica nanoparticles (NPs) for the delivery of the second-generation photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC) to cancer cells in vitro. mTHPC was entrapped in NPs (approximately 33 nm diameter) in a monomeric form which produced singlet oxygen with a high efficiency. In aqueous media with high salt concentrations, the NPs underwent aggregation and precipitation but their stability could be preserved in the presence of foetal bovine serum. The cellular uptake, localization and phototoxic activity of mTHPC was determined comparatively in human oesophageal cancer cells after its delivery by the NPs and the standard solvent ethanol/poly(ethylene glycol) 400/water (20:30:50, by vol). The NP formulation reduced the cellular uptake of mTHPC by about 50% in comparison to standard solvent while it did not affect the concentration-dependent photokilling activity of mTHPC and its intracellular localization. Fluorescence resonance energy transfer measurements, using NPs with mTHPC physically entrapped and a cyanine covalently linked, and ultracentrifugation experiments indicated that mTHPC is transferred from NPs to serum proteins when present in the medium. However, the coating of the NP surface with poly(ethylene glycol) largely prevented the transfer to proteins. In conclusion, mTHPC is rapidly transferred from the uncoated nanoparticles to the serum proteins and then internalized by the cells as a protein complex, irrespective of its modality of delivery.


Subject(s)
Blood Proteins/metabolism , Mesoporphyrins/pharmacokinetics , Nanoparticles/chemistry , Siloxanes/metabolism , Animals , Blood Proteins/chemistry , Cattle , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , Humans , Mesoporphyrins/chemistry , Photochemotherapy , Siloxanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...