Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neuropharmacology ; 246: 109833, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38176534

ABSTRACT

Cigarette smoking remains a leading cause of preventable disease and death worldwide. Due to the devastating negative health effects of smoking, many users attempt to quit, but few are successful in the long-term. Thus, there is a critical need for novel therapeutic approaches. In these investigations, we sought to examine whether cannabidiol (CBD) has the potential to be repurposed as a nicotine cessation therapeutic. In the first study, male and female mice were trained to respond for intravenous nicotine infusions at either a low or moderate nicotine dose and then were pretreated with CBD prior to their drug-taking session. We found that CBD produced a significant decrease in the number of nicotine rewards earned, and this effect was evidenced across CBD doses and with both the low and moderate levels of nicotine intake. These effects on drug intake were not due to general motor-related effects, since mice self-administering food pellets did not alter their behavior with CBD administration. The potential effects of CBD in mitigating nicotine withdrawal symptoms were then investigated. We found that CBD attenuated the somatic signs of nicotine withdrawal and prevented nicotine's hyperalgesia-inducing effects. Taken together, these results demonstrate that modulation of cannabinoid signaling may be a viable therapeutic option as a smoking cessation aid.


Subject(s)
Cannabidiol , Smoking Cessation , Substance Withdrawal Syndrome , Mice , Male , Female , Animals , Nicotine , Cannabidiol/therapeutic use , Smoking , Substance Withdrawal Syndrome/drug therapy , Smoking Cessation/methods
2.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37821229

ABSTRACT

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Subject(s)
Electronic Nicotine Delivery Systems , Habenula , Receptors, Purinergic P2 , Male , Adolescent , Female , Humans , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Synaptic Transmission , Cholinergic Neurons , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/pharmacology
3.
Front Psychiatry ; 14: 1134079, 2023.
Article in English | MEDLINE | ID: mdl-37645635

ABSTRACT

Electronic cigarette use has dramatically increased over the last decade. With this recent technological development and wide range of constituents in various products, putative adverse effects on the brain and body have been largely unexplored. Here, we review current evidence linking electronic nicotine cigarette use with potential health consequences and provide evidence supporting an association between drug use and depression in humans. We also examine the biological effects of individual constituents in electronic cigarette aerosols, which include labeled ingredients, such as propylene glycol, vegetable glycerin, nicotine, and flavorants, as well as unlabeled ingredients found in the aerosols, such as carbonyls and heavy metals. Lastly, we examine the effects of electronic cigarette use on endogenous metabolism via changes in cytochrome P450 enzymes, which can thereby impact therapeutic outcomes. While the current evidence offers insight into the potential effects of electronic cigarette use on biological processes, further studies are necessary to determine the long-term clinical relevance of aerosol inhalation.

5.
Neuroscience ; 473: 142-158, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34298123

ABSTRACT

Exposure to intense or repeated stressors can lead to depression or post-traumatic stress disorder (PTSD). Neurological changes induced by stress include impaired neurotrophin signaling, which is known to influence synaptic integrity and plasticity. The present study used an ex vivo approach to examine the impact of acute or repeated stress on BDNF-stimulated TrkB signaling in hippocampus (HIPPO) and prefrontal cortex (PFC). Rats in an acute multiple stressor group experienced five stressors in one day whereas rats in a repeated unpredictable stressor group experienced 20 stressors across 10 days. After stress exposure, slices were incubated with vehicle or BDNF, followed by immunoprecipitation and immunoblot assays to assess protein levels, activation states and protein-protein linkage associated with BDNF-TrkB signaling. Three key findings are (1) exposure to stressors significantly diminished BDNF-stimulated TrkB signaling in HIPPO and PFC such that reductions in TrkB activation, diminished recruitment of adaptor proteins to TrkB, reduced activation of downstream signaling molecules, disruption of TrkB-NMDAr linkage, and changes in basal and BDNF-stimulated Arc expression were observed. (2) After stress, BDNF stimulation enhanced TrkB-NMDAr linkage in PFC, suggestive of compensatory mechanisms in this region. (3) We discovered an uncoupling between TrkB signaling, TrkB-NMDAr linkage and Arc expression in PFC and HIPPO. In addition, a robust surge in pro-inflammatory cytokines was observed in both regions after repeated exposure to stressors. Collectively, these data provide therapeutic targets for future studies that investigate how to reverse stress-induced downregulation of BDNF-TrkB signaling and underscore the need for functional studies that examine stress-related TrkB-NMDAr activities in PFC.


Subject(s)
Brain-Derived Neurotrophic Factor , Receptors, N-Methyl-D-Aspartate , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Neurons/metabolism , Rats , Receptor, trkB/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
6.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34326065

ABSTRACT

Bombesin receptor subtype-3 (BRS3) is an orphan receptor that regulates energy homeostasis. We compared Brs3 driver mice with constitutive or inducible Cre recombinase activity. The constitutive BRS3-Cre mice show a reporter signal (Cre-dependent tdTomato) in the adult brain because of lineage tracing in the dentate gyrus, striatal patches, and indusium griseum, in addition to sites previously identified in the inducible BRS3-Cre mice (including hypothalamic and amygdala subregions, and parabrachial nucleus). We detected Brs3 reporter expression in the dentate gyrus at day 23 but not at postnatal day 1 or 5 months of age. Hypothalamic sites expressed reporter at all three time points, and striatal patches expressed Brs3 reporter at 1 day but not 5 months. Parabrachial nucleus Brs3 neurons project to the preoptic area, hypothalamus, amygdala, and thalamus. Both Cre recombinase insertions reduced Brs3 mRNA levels and BRS3 function, causing obesity phenotypes of different severity. These results demonstrate that driver mice should be characterized phenotypically and illustrate the need for knock-in strategies with less effect on the endogenous gene.


Subject(s)
Integrases , Receptors, Bombesin , Animals , Brain/metabolism , Hypothalamus/metabolism , Integrases/genetics , Integrases/metabolism , Mice , Mice, Transgenic , Receptors, Bombesin/metabolism
7.
Cell Metab ; 33(7): 1389-1403.e6, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34038711

ABSTRACT

The preoptic area (POA) is a key brain region for regulation of body temperature (Tb), dictating thermogenic, cardiovascular, and behavioral responses that control Tb. Previously characterized POA neuronal populations all reduced Tb when activated. Using mice, we now identify POA neurons expressing bombesin-like receptor 3 (POABRS3) as a population whose activation increased Tb; inversely, acute inhibition of these neurons reduced Tb. POABRS3 neurons that project to either the paraventricular nucleus of the hypothalamus or the dorsomedial hypothalamus increased Tb, heart rate, and blood pressure via the sympathetic nervous system. Long-term inactivation of POABRS3 neurons caused increased Tb variability, overshooting both increases and decreases in Tb set point, with RNA expression profiles suggesting multiple types of POABRS3 neurons. Thus, POABRS3 neuronal populations regulate Tb and heart rate, contribute to cold defense, and fine-tune feedback control of Tb. These findings advance understanding of homeothermy, a defining feature of mammalian biology.


Subject(s)
Body Temperature Regulation , Heart Rate , Neurons/physiology , Preoptic Area/metabolism , Receptors, Bombesin/metabolism , Animals , Body Temperature/genetics , Body Temperature Regulation/genetics , Heart Rate/genetics , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Preoptic Area/cytology , Receptors, Bombesin/genetics , Signal Transduction/genetics , Sympathetic Nervous System/physiology , Thermogenesis/genetics
8.
PLoS One ; 15(12): e0243986, 2020.
Article in English | MEDLINE | ID: mdl-33326493

ABSTRACT

Extracellular adenosine, a danger signal, can cause hypothermia. We generated mice lacking neuronal adenosine A1 receptors (A1AR, encoded by the Adora1 gene) to examine the contribution of these receptors to hypothermia. Intracerebroventricular injection of the selective A1AR agonist (Cl-ENBA, 5'-chloro-5'-deoxy-N6-endo-norbornyladenosine) produced hypothermia, which was reduced in mice with deletion of A1AR in neurons. A non-brain penetrant A1AR agonist [SPA, N6-(p-sulfophenyl) adenosine] also caused hypothermia, in wild type but not mice lacking neuronal A1AR, suggesting that peripheral neuronal A1AR can also cause hypothermia. Mice expressing Cre recombinase from the Adora1 locus were generated to investigate the role of specific cell populations in body temperature regulation. Chemogenetic activation of Adora1-Cre-expressing cells in the preoptic area did not change body temperature. In contrast, activation of Adora1-Cre-expressing dorsomedial hypothalamus cells increased core body temperature, concordant with agonism at the endogenous inhibitory A1AR causing hypothermia. These results suggest that A1AR agonism causes hypothermia via two distinct mechanisms: brain neuronal A1AR and A1AR on neurons outside the blood-brain barrier. The variety of mechanisms that adenosine can use to induce hypothermia underscores the importance of hypothermia in the mouse response to major metabolic stress or injury.


Subject(s)
Hypothermia/metabolism , Receptor, Adenosine A1/metabolism , Adenosine A1 Receptor Agonists/pharmacology , Animals , Hypothalamus/metabolism , Hypothalamus/physiopathology , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Peripheral Nerves/metabolism , Peripheral Nerves/physiopathology
9.
Circ Res ; 122(4): 560-567, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29321129

ABSTRACT

RATIONALE: Animal models have been used to explore factors that regulate atherosclerosis. More recently, they have been used to study the factors that promote loss of macrophages and reduction in lesion size after lowering of plasma cholesterol levels. However, current animal models of atherosclerosis regression require challenging surgeries, time-consuming breeding strategies, and methods that block liver lipoprotein secretion. OBJECTIVE: We sought to develop a more direct or time-effective method to create and then reverse hypercholesterolemia and atherosclerosis via transient knockdown of the hepatic LDLR (low-density lipoprotein receptor) followed by its rapid restoration. METHODS AND RESULTS: We used antisense oligonucleotides directed to LDLR mRNA to create hypercholesterolemia in wild-type C57BL/6 mice fed an atherogenic diet. This led to the development of lesions in the aortic root, aortic arch, and brachiocephalic artery. Use of a sense oligonucleotide replicating the targeted sequence region of the LDLR mRNA rapidly reduced circulating cholesterol levels because of recovery of hepatic LDLR expression. This led to a decrease in macrophages within the aortic root plaques and brachiocephalic artery, that is, regression of inflammatory cell content, after a period of 2 to 3 weeks. CONCLUSIONS: We have developed an inducible and reversible hepatic LDLR knockdown mouse model of atherosclerosis regression. Although cholesterol reduction decreased early en face lesions in the aortic arches, macrophage area was reduced in both early and late lesions within the aortic sinus after reversal of hypercholesterolemia. Our model circumvents many of the challenges associated with current mouse models of regression. The use of this technology will potentially expedite studies of atherosclerosis and regression without use of mice with genetic defects in lipid metabolism.


Subject(s)
Atherosclerosis/genetics , Disease Models, Animal , Gene Knockdown Techniques/methods , Receptors, LDL/genetics , Animals , Aorta/pathology , Atherosclerosis/blood , Atherosclerosis/pathology , Cholesterol/blood , Female , Male , Mice , Mice, Inbred C57BL , Oligonucleotides, Antisense/genetics , Receptors, LDL/metabolism
10.
Neurobiol Learn Mem ; 148: 50-59, 2018 02.
Article in English | MEDLINE | ID: mdl-29294384

ABSTRACT

The retrosplenial cortex (RSC), which receives visuo-spatial sensory input and interacts with numerous hippocampal memory system structures, has a well-established role in contextual learning and memory. While it has been demonstrated that RSC function is necessary to learn to recognize a single environment that is directly paired with an aversive event, the role of the RSC in discriminating between two different contexts remains largely unknown. To address this, first order (Experiment 1) and higher order (Experiment 2) fear conditioning paradigms were conducted with sham and RSC-lesioned rats. In Experiment 1 rats were exposed to one context in which shock was delivered and to a second, distinct context without shock. Their ability to discriminate between the contexts was assessed during a re-exposure test. In a second experiment, a new cohort of RSC-lesioned rats was exposed to two contexts made distinct through visual, olfactory and auditory stimuli. In a subsequent conditioning phase, the salience of one of the auditory stimuli was paired to an aversive footshock while the other was not. Similar to Experiment 1, freezing behavior was analyzed upon re-exposure to the contexts in the absence of both the auditory cue and the footshock. The results revealed that RSC is not necessary for rats to use contextual information to successfully discriminate between two contexts under the relatively simple demands involved in this first order conditioning paradigm but that context discrimination is impaired when the processing of complex and/or ambiguous contextual stimuli is required to select appropriate behavioral responses.


Subject(s)
Behavior, Animal/physiology , Cerebral Cortex/physiology , Conditioning, Classical/physiology , Discrimination Learning/physiology , Animals , Auditory Perception/physiology , Cerebral Cortex/injuries , Cerebral Cortex/physiopathology , Male , Olfactory Perception/physiology , Rats , Rats, Long-Evans , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...