Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776406

ABSTRACT

AIMS: Gene therapy with cardiac phosphodiesterases (PDEs) such as PDE4B has recently been described to effectively prevent heart failure in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload induced heart failure in mice by acting on and restoring altered cAMP compartmentalization in distinct subcellular microdomains. METHODS AND RESULTS: Heart failure was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3 or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentalization in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human induced pluripotent stem derived cardiomyocytes with the A2254 V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS: Our data indicate that gene therapy with phosphodiesterases can prevent heart failure including associated cardiac remodeling and arrhythmias by restoring altered cAMP compartmentalization in functionally relevant subcellular microdomains.

2.
Circ Res ; 133(11): 944-958, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37869877

ABSTRACT

BACKGROUND: ß1AR (beta-1 adrenergic receptor) and ß2AR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac ß-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes. We hypothesized that ß-AR compartmentation in cardiomyocytes is accomplished by selective trafficking of its mRNAs and localized translation. METHODS: The localization pattern of ß-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on ß-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible ß-AR translation sites in cardiomyocytes. The mechanism by which ß-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. RESULTS: ß1AR and ß2AR mRNAs show differential localization in cardiomyocytes, with ß1AR found in the perinuclear region and ß2AR showing diffuse distribution throughout the cell. Disruption of microtubules induces a shift of ß2AR transcripts toward the perinuclear region. The close proximity between ß2AR transcripts and translated proteins suggests that the translation process occurs in specialized, precisely defined cellular compartments. Redistribution of ß2AR transcripts is microtubule-dependent, as microtubule depolymerization markedly reduces the number of functional receptors on the membrane. In failing hearts, both ß1AR and ß2AR mRNAs are redistributed toward the cell periphery, similar to what is seen in cardiomyocytes undergoing drug-induced detubulation. This suggests that t-tubule remodeling contributes to ß-AR mRNA redistribution and impaired ß2AR function in failing hearts. CONCLUSIONS: Asymmetrical microtubule-dependent trafficking dictates differential ß1AR and ß2AR localization in healthy cardiomyocyte microtubules, underlying the distinctive compartmentation of the 2 ß-ARs on the plasma membrane. The localization pattern is altered post-myocardial infarction, resulting from transverse tubule remodeling, leading to distorted ß2AR-mediated cyclic adenosine monophosphate signaling.


Subject(s)
Heart Failure , Myocardial Infarction , Rats , Animals , In Situ Hybridization, Fluorescence , Heart Failure/metabolism , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Cyclic AMP/metabolism , Receptors, Adrenergic, beta-1/metabolism , Microtubules/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology
3.
Front Endocrinol (Lausanne) ; 14: 1239492, 2023.
Article in English | MEDLINE | ID: mdl-37674612

ABSTRACT

The renin-angiotensin-aldosterone system (RAAS) is one of the key players in the regulation of blood volume and blood pressure. Dysfunction of this system is connected with cardiovascular and renal diseases. Regulation of RAAS is under the control of multiple intracellular mechanisms. Cyclic nucleotides and phosphodiesterases are the major regulators of this system since they control expression and activity of renin and aldosterone. In this review, we summarize known mechanisms by which cyclic nucleotides and phosphodiesterases regulate renin gene expression, secretion of renin granules from juxtaglomerular cells and aldosterone production from zona glomerulosa cells of adrenal gland. We also discuss several open questions which deserve future attention.


Subject(s)
Renin-Angiotensin System , Renin , Aldosterone , Nucleotides, Cyclic , Phosphoric Diester Hydrolases
4.
Infect Genet Evol ; 98: 105217, 2022 03.
Article in English | MEDLINE | ID: mdl-35065303

ABSTRACT

For centuries the world has been confronted with many infectious diseases, with a potential to turn into a pandemic posing a constant threat to human lives. Some of these pandemics occurred due to the emergence of new disease or re-emergence of previously known diseases with a few mutations. In such scenarios their optimal prevention and control options were not adequately developed. Most of these diseases are highly contagious and for their timely control, knowledge about the pathogens and disease progression is the basic necessity. In this review, we have presented a documented chronology of the earlier pandemics, evolutionary analysis of the infectious disease with pandemic potential, the role of RNA, difficulties in controlling pandemics, and the likely pathogens that could trigger future pandemics. In this study, the evolutionary history of the pathogens was identified by carrying out phylogenetic analysis. The percentage similarity between different infectious diseases is critically analysed for the identification of their correlation using online sequence matcher tools. The Baltimore classification system was used for finding the genomic nature of the viruses. It was observed that most of the infectious pathogens rise from their animal hosts with some mutations in their genome composition. The phylogenetic tree shows that the single-stranded RNA diseases have a common origin and many of them are having high similarity percentage. The outcomes of this study will help in the identification of potential pathogens that can cause future pandemics. This information will be helpful in the development of early detection techniques, devising preventive mechanism to limit their spread, prophylactic measures, Infection control and therapeutic options, thereby, strengthening our approach towards global preparedness against future pandemics.


Subject(s)
Communicable Disease Control , Communicable Diseases/epidemiology , Forecasting , Pandemics/prevention & control , Phylogeny , Animals , Humans
5.
In Silico Pharmacol ; 9(1): 46, 2021.
Article in English | MEDLINE | ID: mdl-34336545

ABSTRACT

This study is an attempt to find a suitable therapy using antimicrobial peptides (AMPs) by identifying peptide-protein interaction of AMPs and nucleocapsid protein of SARS and SARS-CoV- 2. The AMPs were shortlisted from the APD3 database (Antimicrobial peptide database) based on various physicochemical parameters. The binding efficacy of AMPs was measured using the lowest energy score of the docked complexes with 10 selected AMPs. For SARS-CoV, AP00180 showed the best pose with a binding affinity value of - 6.4 kcal/mol. Prominent hydrogen bonding interactions were observed between Lys85 (nucleocapsid receptor) and Arg13 (antimicrobial peptide ligand) having the least intermolecular distance of 1.759 Å. For SARS-CoV-2, AP00549 was docked with a binding affinity value of - 3.4 kcal/mol and Arg119 and Glu14 of receptor nucleocapsid protein and ligand AMP having the least intermolecular distance of 2.104 The dynamic simulation was performed at 50 ns to check the stability of the final docked complexes, one with each protein. The two best AMPs were AP00180 (Human Defensin-5) for SARS and AP00549 (Plectasin) for SARS-CoV-2. From positive results of dynamic simulation and previously known knowledge that some AMPs interact with the nucleocapsid of coronaviruses, these AMPs might be used as a potential therapeutic agent for the treatment regime of SARS-CoV-2 and SARS infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40203-021-00103-z.

SELECTION OF CITATIONS
SEARCH DETAIL
...