Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Food Chem ; 446: 138816, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38422646

ABSTRACT

The current study aimed to assess the chemical, microbial, and sensory properties of Solid Lipid Nanoparticles (SLNs) in chicken fillets stored at 4 ± 1 °C for 12 days. As a result, the optimized ZEO-SLNS sample exhibited a spherical morphology with a droplet size of 251.51 ± 1.11 nm and a PDI of 0.34 ± 0.01 under transmission electron microscopy (TEM). The encapsulation efficiency (EE) and zeta potential were approximately 55.4 % and -20.87 ± 1.39 mV, respectively. Furthermore, encapsulating ZEO in SLNS enhanced antibacterial and antioxidant activity compared to pure ZEO. As a result, the application of alginate-loaded ZEO-SLNS extended the storage time of fresh chicken fillets. Thus, the application of this edible coating showcased a remarkable ability to substantially decelerate both microbial and chemical changes in chicken fillets during cold storage conditions. This finding underscores the potential of the edible coating as an effective means to enhance the safety and quality of chicken products.


Subject(s)
Liposomes , Nanoparticles , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Chickens , Alginates/pharmacology , Alginates/chemistry , Nanoparticles/chemistry
2.
J Fluoresc ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37707711

ABSTRACT

Fumed silica was functionalized by piperazine followed by the reaction with 2- naphthalenesulfonyl chloride to prepare Fumed-Si-Pr-Piperazine-Naphthalenesulfonyl chloride (Fumed-Si-Pr-PNS), which was characterized to demonstrate the effective attachment on the surface of fumed silica. The optical sensing ability of Fumed-Si-Pr-PNS was studied via diverse metal ions in H2O solution by photoluminescence spectroscopy. The results showed that Fumed-Si-Pr-PNS detected selectively Hg2+ ions. The prepared sensor showed almost high absorption at different pH for Hg ion. After drawing various diagrams, The detection limits were calculated at about 12.45 × 10-6 M for Hg2+.

3.
Environ Res ; 237(Pt 1): 116910, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37597834

ABSTRACT

Photocatalysis is considered as an eco-friendly and sustainable strategy, since it uses abundant light for the advancement of the reaction, which is freely accessible and is devoid of environmental pollution. During the last decades, (nano)photocatalysts have gained broad industrial applications in terms of purification and detoxification of water as well as production of green fuels and hydrogen gas due to their special attributes. The degradation or remediation of toxic and hazardous compounds from the environment or changing them into non-toxic entities is a significant endeavor and necessary for the safety of humans, animals, and the environment. Black phosphorus (BP), a two-dimensional single-element material, has a marvelous structure, tunable bandgap, changeable morphology from bulk to nanosheet/quantum dot, and unique physicochemical properties, which makes it attractive material for photocatalytic applications, especially for sustainable development purposes. Since it can serve as a photocatalyst with or without coupling with other semiconductors, various aspects for multidimensional exploitation of BP are deliberated including their preparation via solvothermal, ball milling, calcination, and sonication methods to obtain BP from red phosphorus. The techniques for improving the photocatalytic and stability of BP-based composites are discussed along with their multifaceted applications for environmental remediation, pollution degradation, water splitting, N2 fixation, CO2 reduction, bacterial disinfection, H2 generation, and photodynamic therapy. Herein, most recent advancements pertaining to the photocatalytic applications of BP-based photocatalyst are cogitated, with a focus on their synthesis and properties as well as crucial challenges and future perspectives.

4.
Mar Drugs ; 21(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37504912

ABSTRACT

This study set out to evaluate the wound healing properties of brittle star extracts in vitro and in vivo. Due to the great arm regeneration potential of the brittle star, Ophiocoma cynthiae, the present study aimed to evaluate the wound healing effect of hydroalcoholic extracts of brittle star undergoing arm regeneration in wound healing models. The brittle star samples were collected from Nayband Bay, Bushehr, Iran. After wound induction in the arm of brittle stars, hydroalcoholic extracts relating to different times of arm regeneration were prepared. The GC-MS analysis, in vitro MTT cell viability and cell migration, Western blot, and computational analysis tests were performed. Based on the in vitro findings, two BSEs were chosen for in vivo testing. Macroscopic, histopathological and biochemical evaluations were performed after treatments. The results showed positive proliferative effects of BSEs. Specifically, forty-two compounds were detected in all groups of BSEs using GC-MS analysis, and their biological activities were assessed. The MTT assay showed that the 14 d BSE had a higher proliferative effect on HFF cells than 7 d BSE. The cell migration assay showed that the wound area in 7 d and 14 d BSEs was significantly lower than in the control group. Western blot analysis demonstrated an increase in the expression of proliferation-related proteins. Upon the computational analysis, a strong affinity of some compounds with proteins was observed. The in vivo analysis showed that the evaluation of wound changes and the percentage of wound healing in cell migration assay in the 7 d BSE group was better than in the other groups. Histopathological scores of the 7 d BSE and 14 d BSE groups were significantly higher than in the other groups. In conclusion, the hydroalcoholic extract of O. cynthiae undergoing arm regeneration after 7 and 14 days promoted the wound healing process in the cell and rat skin wound healing model due to their proliferative and migratory biological activity.


Subject(s)
Plant Extracts , Wound Healing , Rats , Animals , Plant Extracts/pharmacology , Echinodermata , Cell Movement , Tissue Extracts/pharmacology
5.
RSC Adv ; 13(25): 17324-17339, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37304786

ABSTRACT

Enhancement of the photocatalytic activity of black phosphorus (BP) is a highly challenging proposition. The fabrication of electrospun composite nanofibers (NFs) through the incorporation of modified BP nanosheets (BPNs) into conductive polymeric NFs has been recently introduced as a newer strategy not only to enhance the photocatalytic activity of BPNs but also to overcome their drawbacks including ambient instability, aggregation, and hard recycling, which exist in their nanoscale powdered forms. The proposed composite NFs were prepared through the incorporation of silver (Ag)-modified BPNs, gold (Au)-modified BPNs, and graphene oxide (GO)-modified BPNs into polyaniline/polyacrylonitrile (PANi/PAN) NFs by an electrospinning process. The successful preparation of the modified BPNs and electrospun NFs was confirmed by the characterization techniques of Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis), powder X-ray diffraction (PXRD), and Raman spectroscopy. The pure PANi/PAN NFs exhibited high thermal stability with a main weight loss of ∼23% for the temperature range of 390-500 °C, and the thermal stability of NFs was enhanced after their incorporation with the modified BPNs. The BPNs@GO-incorporated PANi/PAN NFs indicated improved mechanical properties compared to the pure PANi/PAN NFs with tensile strength (TS) of 1.83 MPa and elongation at break (EAB) of 24.91%. The wettability of the composite NFs was measured in the range of 35-36°, which exhibited their good hydrophilicity. The photodegradation performance was found in the sequence of BPNs@GO > BPNs@Au > BPNs@Ag > bulk BP ∼BPNs > red phosphorus (RP) for methyl orange (MO) and in the sequence of BPNs@GO > BPNs@Ag > BPNs@Au > bulk BP > BPNs > RP for methylene blue (MB), accordingly. The composite NFs degraded the MO and MB dyes more efficiently relative to the modified BPNs and pure PANi/PAN NFs.

6.
Environ Res ; 226: 115664, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36913998

ABSTRACT

Metal-organic frameworks (MOFs) have recently garnered considerable attention among reticular compounds due to their unique physicochemical properties and applications in sensing toxic compounds. On the other hand, fluorometric sensing has been widely studied for food safety and environmental protection among the various sensing methods. Thus, designing MOF-based fluorescence sensors for specific detection of hazardous compounds, especially pesticides, are incessantly needed to keep up with the continuous demands for monitoring these environmental pollution. Herein, recent MOF-based platforms for pesticide fluorescence detection are deliberated owing to sensors' emission origins and in terms of their structural properties. The influences of different guest incorporation in MOFs on pesticide fluorescence detection are summarized, and the future developments of novel MOF composites such as polyoxometalate@MOFs (POMOF), carbon quantum dots@MOFs (CDs@MOF), and organic dye@MOF are prospected for fluorescence sensing of assorted pesticides with a focus on mechanistic insights of specific detection techniques in food safety and environmental protection.


Subject(s)
Metal-Organic Frameworks , Pesticides , Food Safety , Carbon , Coloring Agents , Environmental Pollution
7.
RSC Adv ; 13(12): 8136-8152, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36922952

ABSTRACT

Covalent organic frameworks (COFs) are crystal-like organic structures such as cartography buildings prepared from appropriately pre-designed construction block precursors. Moreover, after the expansion of the first COF in 2005, numerous researchers have been developing different materials for versatile applications such as sensing/imaging, cancer theranostics, drug delivery, tissue engineering, wound healing, and antimicrobials. COFs have harmonious pore size, enduring porosity, thermal stability, and low density. In addition, a wide variety of functional groups could be implanted during their construction to provide desired constituents, including antibodies and enzymes. The reticular organic frameworks comprising porous hybrid materials connected via a covalent bond have been studied for improving wound healing and dressing applications due to their long-standing antibacterial properties. Several COF-based systems have been planned for controlled drug delivery with wound healing purposes, targeting drugs to efficiently inhibit the growth of pathogenic microorganisms at the wound spot. In addition, COFs can be deployed for combinational therapy using photodynamic and photothermal antibacterial therapy along with drug delivery for healing chronic wounds and bacterial infections. Herein, the most recent advancements pertaining to the applications of COF-based systems against bacterial infections and for wound healing are considered, concentrating on challenges and future guidelines.

8.
Nanomaterials (Basel) ; 13(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36678099

ABSTRACT

Today, MXenes and their composites have shown attractive capabilities in numerous fields of electronics, co-catalysis/photocatalysis, sensing/imaging, batteries/supercapacitors, electromagnetic interference (EMI) shielding, tissue engineering/regenerative medicine, drug delivery, cancer theranostics, and soft robotics. In this aspect, MXene-carbon nanotube (CNT) composites have been widely constructed with improved environmental stability, excellent electrical conductivity, and robust mechanical properties, providing great opportunities for designing modern and intelligent systems with diagnostic/therapeutic, electronic, and environmental applications. MXenes with unique architectures, large specific surface areas, ease of functionalization, and high electrical conductivity have been employed for hybridization with CNTs with superb heat conductivity, electrical conductivity, and fascinating mechanical features. However, most of the studies have centered around their electronic, EMI shielding, catalytic, and sensing applications; thus, the need for research on biomedical and diagnostic/therapeutic applications of these materials ought to be given more attention. The photothermal conversion efficiency, selectivity/sensitivity, environmental stability/recyclability, biocompatibility/toxicity, long-term biosafety, stimuli-responsiveness features, and clinical translation studies are among the most crucial research aspects that still need to be comprehensively investigated. Although limited explorations have focused on MXene-CNT composites, future studies should be planned on the optimization of reaction/synthesis conditions, surface functionalization, and toxicological evaluations. Herein, most recent advancements pertaining to the applications of MXene-CNT composites in sensing, catalysis, supercapacitors/batteries, EMI shielding, water treatment/pollutants removal are highlighted, focusing on current trends, challenges, and future outlooks.

9.
Micromachines (Basel) ; 13(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296126

ABSTRACT

MXenes with unique mechanical, optical, electronic, and thermal properties along with a specific large surface area for surface functionalization/modification, high electrical conductivity, magnetic properties, biocompatibility, and low toxicity have been explored as attractive candidates for the targeted delivery of drugs in cancer therapy. These two-dimensional materials have garnered much attention in the field of cancer therapy since they have shown suitable photothermal effects, biocompatibility, and luminescence properties. However, outstanding challenging issues regarding their pharmacokinetics, biosafety, targeting properties, optimized functionalization, synthesis/reaction conditions, and clinical translational studies still need to be addressed. Herein, recent advances and upcoming challenges in the design of advanced targeted drug delivery micro- and nanosystems in cancer therapy using MXenes have been discussed to motivate researchers to further investigate this field of science.

10.
Chemosphere ; 307(Pt 1): 135622, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35810872

ABSTRACT

It is crucial to fabricate cost-effective and efficient strategies for monitoring and eliminating hazardous metals in the water supplies. Among the many techniques, adsorption is one of the most powerful and facile ways for eliminating pollutants from effluents. It is also crucial to engineering high-performance low-cost adsorbents. In this regard, herein, Fe3O4@SiO2@(BuSO3H)3 as a modified core-shell magnetic silica nanoparticle embodies good selectivity to extract toxic metal ions from aquatic media. The present work investigated the removal performance of the magnetic adsorbent towards Pd2+ cation amongst the other heavy metal ions including Co2+, Pb2+, Hg2+, Cd2+, Cu2+, Zn2+ in aqueous solution. The flame atomic absorption spectrometry (FAAS) was utilized to assess the removal efficiency of the adsorbent. Several experimental parameters including elution condition, initial Pd(II) concentration, adsorbent dosage, initial pH of the solution, and contact time were explored to achieve the optimal conditions. The data of adsorption were very well with the Langmuir isotherm model, according to the adsorption isotherm mechanism experiments. In conclusion, this study lays the way for the development of novel magnetic adsorbents with high removal efficiencies for the removal of toxic metal ions from aqueous environment.


Subject(s)
Magnetite Nanoparticles , Mercury , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cadmium/analysis , Hydrogen-Ion Concentration , Ions , Kinetics , Lead , Mercury/analysis , Metals, Heavy/analysis , Silicon Dioxide , Water Pollutants, Chemical/analysis
11.
Environ Res ; 212(Pt B): 113245, 2022 09.
Article in English | MEDLINE | ID: mdl-35398086

ABSTRACT

An organic chemical sensor based on pyrimidine was successfully produced through the green reaction between aromatic aldehyde, malononitrile, and guanidine carbonate using SBA-Pr-SO3H. This fluorescence intensity of chemosensor (2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile) decreases by the addition of Hg2+ and its detection limit is about 14.89 × 10-5 M, in fact, through the green synthesis, the ligand was yielded to detect Hg2+ and the importance of ligand was considered in docking studies. The molecular docking of 2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile compound has been done with the protein selective estrogen receptor 5ACC complexed with (Azd9496), Human Anaplastic Lymphoma Kinase Pdb; 2xp2 complex with crizotinib (PF-02341066) and human wee1 kinase Pdb; 5vc3 complexed with bosutinib. The ligands 2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile generate very good docking results with the protein Pdb; 2xp2, which is responsible for effective tumor growth inhibition.


Subject(s)
Mercury , Humans , Ions , Ligands , Molecular Docking Simulation , Pyrimidines/chemistry
12.
Top Curr Chem (Cham) ; 380(4): 24, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35467226

ABSTRACT

1H-Indole-3-carbaldehyde and related members of the indole family are ideal precursors for the synthesis of active molecules. 1H-Indole-3-carbaldehyde and its derivatives are essential and efficient chemical precursors for generating biologically active structures. Multicomponent reactions (MCRs) offer access to complex molecules. This review highlights the recent applications of 1H-indole-3-carbaldehyde in such inherently sustainable multicomponent reactions from the period, 2014 to 2021 and provides an overview of the field that awaits further exploitation in the assembly of pharmaceutically interesting scaffolds.


Subject(s)
Indoles , Indoles/chemistry
13.
RSC Adv ; 12(20): 12672-12701, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35480367

ABSTRACT

Magnetic nanoparticles have attracted significant attention due to their high surface area and superparamagnetic properties. Bio-polymers composed of polysaccharides including alginate, cellulose, glucose, dextrin, chitosan, and starch can be immobilized on magnetic nanoparticles. Bio-polymers can be obtained from natural sources, such as plants, tunicates, algae, and bacteria. Bio-polymers obtained from natural sources have attracted attention due to their various properties including efficient functional groups, non-toxicity, low cost, availability, and biocompatibility. According to the targets of "green chemistry", the application of bio-polymers is effective in reducing pollution. Furthermore, they are excellent agents for the functionalization of magnetic nanoparticles to yield nanomagnetic bio-polymers, which can be applied as recoverable and eco-friendly catalysts in multicomponent reactions.

14.
Curr Org Synth ; 19(8): 874-904, 2022.
Article in English | MEDLINE | ID: mdl-35352650

ABSTRACT

Ionic liquid functionalized mesoporous silica compounds present significant advantages in organic synthesis as catalysts. There are various preparation procedures for the synthesis of diverse ionic liquid catalysts, which have different catalytic properties with various roles in organic reactions. Therefore, due to the increment in the usage of mesoporous materials in the industry and numerous pieces of research, in this article, the information on the development of ionic liquids supported on SBA-15 between the years 2014 and 2021 was gathered.


Subject(s)
Ionic Liquids , Silicon Dioxide , Chemistry Techniques, Synthetic , Catalysis
15.
Nat Prod Bioprospect ; 12(1): 3, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35129687

ABSTRACT

Natural products have attracted the interest of the scientific community due to their importance and application. Alexine is a naturally polyhydroxylated pyrrolizidine alkaloid that is broadly found in plant sources and isolated from Alexa leiopetala. The biological properties such as glycosidase inhibitors, anti-virus, and anti-HIV activities, makes it interesting target for synthetical studies. This review reports different approaches and methodologies to the synthesis of alexine, and its stereoisomers as the target compounds in numerous studies.

16.
Chemosphere ; 294: 133759, 2022 May.
Article in English | MEDLINE | ID: mdl-35092752

ABSTRACT

The utilization of renewable and abundant agricultural waste such as Pomegranate (Punica granatum L.) peel extract has been developed wherein a simple extraction of dried peel in water offered a natural sensor; ensuing yellowish solution comprising phenolic compounds reacted explicitly to detect Fe+3 and I- solutions by naked-eye. The UV-Vis absorption spectrum of the resulting extracted mixture was drastically changed toward the longer wavelengths only after the addition of the Fe3+ and I- while there was no discernible spectral change due to the addition of a broad range of other common cations and anions. In the case of Fe3+ and I-, the transformation can be followed by the naked eye in the concentration range of 5 × 10-4 M and 1 × 10-2 M, respectively. An acceptable and reasonable detection with 47.05426 µM efficiency was attained in comparison to other Fe3+ indicators such as ferroin.


Subject(s)
Lythraceae , Pomegranate , Colorimetry , Plant Extracts , Water
17.
Curr Org Synth ; 19(3): 414-425, 2022.
Article in English | MEDLINE | ID: mdl-34429049

ABSTRACT

The natural terpene limonene is widely found in nature. The (R)-limonene (the most abundant enantiomer) is present in the essential oils of lemon, orange, and other citrus fruits, while the (S)- limonene is found in peppermint and the racemate in turpentine oil. Limonene is a low-cost, low toxicity biodegradable terpene present in agricultural wastes derived from citrus peels. The products obtained from the conversion of limonene are valuable compounds widely used as additives for food, cosmetics, or pharmaceuticals. The conversion of limonene to produce different products has been the subject of intense research, mainly with the objective of improving catalytic systems. This review focused on the application of heterogeneous catalysts in the catalytic conversion of limonene.


Subject(s)
Citrus , Oils, Volatile , Catalysis , Limonene , Terpenes
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120580, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34776379

ABSTRACT

SBA-Pr-NHC as a novel silica-based chemosensor was synthesized through the functionalization of mesoporous silica SBA-15 material with 4-hydroxy-2-oxo-2H-chromene-3-carbaldehyde, which was successfully immobilized to the surface of mesoporous silica, and its hexagonal mesoporous structure has been preserved. Photoluminescence spectroscopy was applied to study the sensing behavior of SBA-Pr-NHC, which displayed high selectivity for sensing Ag+ ion in aqueous media. After the addition of trace amounts of Ag+ ions into the aqueous solution, a significant enhancement of fluorescence emission has occurred with the detection limits of 2.4 × 10-5 M.


Subject(s)
Fluorescent Dyes , Water , Ions , Spectrometry, Fluorescence
19.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34684975

ABSTRACT

SBA-Pr-Is-TAP was synthesized via functionalization of SBA-15. The synthesized hybrid nanomaterial was characterized by various techniques including FT-IR, TGA, XRD, SEM, and BET. SBA-Pr-Is-TAP could precisely bind Fe3+ and Cr2O72- ions among a range of different species in aqueous media, consequently acting as a nanoporous chemosensor of Fe3+ and Cr2O72- ions. An excellent linear relation was observed between the nanoporous chemosensor and ion concentrations, with acceptable detection limits of 2.43 × 10-6 M and 3.96 × 10-7 M for Fe3+ and Cr2O72- ions respectively.

20.
RSC Adv ; 11(12): 6517-6525, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-35423209

ABSTRACT

Magnetic nanoparticles have been widely studied for various scientific and technological applications such as magnetic storage media, contrast agents for magnetic resonance imaging (MRI), biolabelling, separation of biomolecules, and magnetic-targeted drug delivery. A new strategy on Au-magnetic nano-hybrid core-shells was applied in MRI, CT imaging, and drug delivery, which has been received much attention nowadays. Herein, the designing of different magnetic core-shells with Au in MRI and cancer treatment is studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...