Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Antimicrob Agents Chemother ; : e0149523, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747600

ABSTRACT

Gentamicin is widely used to treat neonatal infections caused by both Gram-negative and Gram-positive bacteria, and the WHO recommends its use while monitoring serum creatinine and gentamicin concentrations to avoid drug-induced nephrotoxicity and ototoxicity. Yet in some resource-limited settings, the drug is used without monitoring. A population pharmacokinetics study involving term neonates with neonatal infection admitted to a neonatal unit. Participants were started on intravenous gentamicin 5 mg/kg once a day in combination with ampicilin-cloxacillin. Blood samples for serum gentamicin concentration were taken at 0.25, 0.5, 1, 2, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 23, and 24 hours after the initial dose, each participant contributing two samples to the 24 hour sampling schedule. An additional sample for trough concentration was taken from each participant just before the third gentamicin dose while serum creatinine concentration was measured before and after treatment. Twenty-four participants were enrolled into the study and included in the final analysis. Mean (SD) peak and trough serum gentamicin concentrations were 16.66 (0.64) µg/mL and 3.28 (0.70) µg/mL, respectively. Gentamicin clearance (CL) was 0.40 mL min-1 kg-1 and volume of distribution (VD) was 0.31 L kg-1. Mean (SD) serum creatinine level after treatment was 209.7 (70.4) µmol/L compared to 103.3 (23.6) µmol/L before treatment [mean difference (106.4 ± 67.1; 95% confidence interval (CI): 78.1; 134.7 µmol/L; t (23) = 7.77; P < 0.001]. All participants fulfilled the Kidney Disease Improving Global Outcomes (KDIGO) criteria for acute kidney injury after treatment. Treatment of neonatal infection with antimicrobial regimen containing gentamicin, without renal function and gentamicin concentration monitoring, carries a significant risk for drug-induced acute kidney injury.

2.
Malar J ; 23(1): 101, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594679

ABSTRACT

BACKGROUND: Artemisinin-based combination therapy (ACT) has been a major contributor to the substantial reductions in global malaria morbidity and mortality over the last decade. In Tanzania, artemether-lumefantrine (AL) was introduced as the first-line treatment for uncomplicated Plasmodium falciparum malaria in 2006. The World Health Organization (WHO) recommends regular assessment and monitoring of the efficacy of the first-line treatment, specifically considering that artemisinin resistance has been confirmed in the Greater Mekong sub-region. This study's main aim was to assess the efficacy and safety of AL for treating uncomplicated P. falciparum malaria in Tanzania. METHODS: This was a single-arm prospective antimalarial drug efficacy trial conducted in four of the eight National Malaria Control Programme (NMCP) sentinel sites in 2019. The trial was carried out in outpatient health facilities in Karume-Mwanza region, Ipinda-Mbeya region, Simbo-Tabora region, and Nagaga-Mtwara region. Children aged six months to 10 years with microscopy confirmed uncomplicated P. falciparum malaria who met the inclusion criteria were recruited based on the WHO protocol. The children received AL (a 6-dose regimen of AL twice daily for three days). Clinical and parasitological parameters were monitored during follow-up over 28 days to evaluate drug efficacy. RESULTS: A total of 628 children were screened for uncomplicated malaria, and 349 (55.6%) were enrolled between May and September 2019. Of the enrolled children, 343 (98.3%) completed the 28-day follow-up or attained the treatment outcomes. There were no early treatment failures; recurrent infections during follow-up were common at two sites (Karume 29.5%; Simbo 18.2%). PCR-corrected adequate clinical and parasitological response (ACPR) by survival analysis to AL on day 28 of follow-up varied from 97.7% at Karume to 100% at Ipinda and Nagaga sites. The commonly reported adverse events were cough, skin pallor, and abdominal pain. The drug was well tolerated, and no serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria in Tanzania in 2019. The high recurrent infections were mainly due to new infections, highlighting the potential role of introducing alternative artemisinin-based combinations that offer improved post-treatment prophylaxis, such as artesunate-amodiaquine (ASAQ).


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Child , Humans , Infant , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/adverse effects , Tanzania , Reinfection/chemically induced , Reinfection/drug therapy , Prospective Studies , Drug Combinations , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Artemisinins/adverse effects , Amodiaquine/therapeutic use , Malaria/drug therapy , Treatment Outcome , Plasmodium falciparum
3.
Malar J ; 23(1): 95, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582830

ABSTRACT

BACKGROUND: The use of artemisinin-based combination therapy (ACT) is recommended by the World Health Organization for the treatment of uncomplicated falciparum malaria. Artemether-lumefantrine (AL) is the most widely adopted first-line ACT for uncomplicated malaria in sub-Saharan Africa (SSA), including mainland Tanzania, where it was introduced in December 2006. The WHO recommends regular assessment to monitor the efficacy of the first-line treatment specifically considering that artemisinin partial resistance was reported in Greater Mekong sub-region and has been confirmed in East Africa (Rwanda and Uganda). The main aim of this study was to assess the efficacy and safety of AL for the treatment of uncomplicated falciparum malaria in mainland Tanzania. METHODS: A single-arm prospective anti-malarial drug efficacy trial was conducted in Kibaha, Mlimba, Mkuzi, and Ujiji (in Pwani, Morogoro, Tanga, and Kigoma regions, respectively) in 2018. The sample size of 88 patients per site was determined based on WHO 2009 standard protocol. Participants were febrile patients (documented axillary temperature ≥ 37.5 °C and/or history of fever during the past 24 h) aged 6 months to 10 years. Patients received a 6-dose AL regimen by weight twice a day for 3 days. Clinical and parasitological parameters were monitored during 28 days of follow-up to evaluate the drug efficacy and safety. RESULTS: A total of 653 children were screened for uncomplicated malaria and 349 (53.7%) were enrolled between April and August 2018. Of the enrolled children, 345 (98.9%) completed the 28 days of follow-up or attained the treatment outcomes. There were no early treatment failures, but recurrent infections were higher in Mkuzi (35.2%) and Ujiji (23%). By Kaplan-Meier analysis of polymerase chain reaction (PCR) uncorrected adequate clinical and parasitological response (ACPR) ranged from 63.4% in Mkuzi to 85.9% in Mlimba, while PCR-corrected ACPR on day 28 varied from 97.6% in Ujiji to 100% in Mlimba. The drug was well tolerated; the commonly reported adverse events were cough, runny nose, and abdominal pain. No serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria. The high number of recurrent infections were mainly due to new infections, indicating the necessity of utilizing alternative artemisinin-based combinations, such as artesunate amodiaquine, which provide a significantly longer post-treatment prophylactic effect.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Child , Humans , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/adverse effects , Tanzania , Reinfection/chemically induced , Reinfection/drug therapy , Artemisinins/adverse effects , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Amodiaquine/therapeutic use , Malaria/drug therapy , Fever/drug therapy , Drug Combinations , Ethanolamines/adverse effects , Plasmodium falciparum
4.
Sci Rep ; 14(1): 8158, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589477

ABSTRACT

Plasmodium falciparum with the histidine rich protein 2 gene (pfhrp2) deleted from its genome can escape diagnosis by HRP2-based rapid diagnostic tests (HRP2-RDTs). The World Health Organization (WHO) recommends switching to a non-HRP2 RDT for P. falciparum clinical case diagnosis when pfhrp2 deletion prevalence causes ≥ 5% of RDTs to return false negative results. Tanzania is a country of heterogenous P. falciparum transmission, with some regions approaching elimination and others at varying levels of control. In concordance with the current recommended WHO pfhrp2 deletion surveillance strategy, 100 health facilities encompassing 10 regions of Tanzania enrolled malaria-suspected patients between February and July 2021. Of 7863 persons of all ages enrolled and providing RDT result and blood sample, 3777 (48.0%) were positive by the national RDT testing for Plasmodium lactate dehydrogenase (pLDH) and/or HRP2. A second RDT testing specifically for the P. falciparum LDH (Pf-pLDH) antigen found 95 persons (2.5% of all RDT positives) were positive, though negative by the national RDT for HRP2, and were selected for pfhrp2 and pfhrp3 (pfhrp2/3) genotyping. Multiplex antigen detection by laboratory bead assay found 135/7847 (1.7%) of all blood samples positive for Plasmodium antigens but very low or no HRP2, and these were selected for genotyping as well. Of the samples selected for genotyping based on RDT or laboratory multiplex result, 158 were P. falciparum DNA positive, and 140 had sufficient DNA to be genotyped for pfhrp2/3. Most of these (125/140) were found to be pfhrp2+/pfhrp3+, with smaller numbers deleted for only pfhrp2 (n = 9) or only pfhrp3 (n = 6). No dual pfhrp2/3 deleted parasites were observed. This survey found that parasites with these gene deletions are rare in Tanzania, and estimated that 0.24% (95% confidence interval: 0.08% to 0.39%) of false-negative HRP2-RDTs for symptomatic persons were due to pfhrp2 deletions in this 2021 Tanzania survey. These data provide evidence for HRP2-based diagnostics as currently accurate for P. falciparum diagnosis in Tanzania.


Subject(s)
Blood Group Antigens , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Gene Deletion , Tanzania/epidemiology , Diagnostic Tests, Routine/methods , Antigens, Protozoan/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Health Facilities , DNA
5.
Malar J ; 23(1): 90, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553737

ABSTRACT

BACKGROUND: Diversification of artemisinin-based combination therapy (ACT) is suggested as one of the strategies that can be used to contain artemisinin resistance. Artesunate-amodiaquine (ASAQ) is one of the artemisinin-based combinations that can be used in the diversification strategy as an alternative first-line treatment for uncomplicated malaria in mainland Tanzania. There is however limited data on the efficacy of ASAQ in mainland Tanzania. This study assessed the efficacy of ASAQ for treatment of uncomplicated Plasmodium falciparum malaria in selected sentinel sites for therapeutic efficacy studies in mainland Tanzania. METHODS: Between December 2018 and March 2020, children aged between 6 months and 10 years, attending at Nagaga, Mkuzi, and Mlimba primary health facilities, and with suspected uncomplicated malaria infection were screened for eligibility to participate in the study. Malaria infection was screened using microscopy. Children with uncomplicated P. falciparum monoinfection and who fulfilled all other inclusion criteria, and had none of the exclusion criteria, according to the World Health Organization (WHO) guidelines, were treated with ASAQ. Follow-up visits were scheduled on days 0, 1, 2, 3, 7, 14, 21, and 28 or on any day of recurrent infection for clinical and laboratory assessment. Polymerase chain reaction (PCR)-corrected cure rate on day 28 was the primary outcome. RESULTS: A total of 264 children, 88 in each of the three study sites (Mlimba, Mkuzi and Nagaga health facilities) were enrolled and treated with ASAQ. The ASAQ PCR-corrected cure rate was 100% at all the three study sites. None of the participants had early treatment failure or late clinical failure. Furthermore, none of the participants had a serious adverse event. CONCLUSION: ASAQ was highly efficacious for the treatment of uncomplicated P. falciparum malaria in mainland Tanzania, therefore, it can be deployed as an alternative first-line treatment for uncomplicated malaria as part of diversification strategy to contain the spread of partial artemisinin resistance in the country.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Child , Humans , Infant , Amodiaquine , Artesunate/therapeutic use , Tanzania , Plasmodium falciparum , Drug Combinations , Malaria, Falciparum/drug therapy , Malaria/drug therapy
6.
Am J Trop Med Hyg ; 110(5): 887-891, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38507797

ABSTRACT

As part of malaria nationwide monitoring and evaluation initiatives, there is an increasing trend of incorporating malaria rapid diagnostic tests (mRDTs) in surveys conducted within primary schools to detect malaria parasites. However, mRDTs based on the detection of histidine-rich protein 2 (HRP2) are known to yield false-positive results due to persistent antigenemia, and false-negative results may result from low parasitemia or Plasmodium falciparum hrp2/3 gene deletion. We evaluated diagnostic performance of an HRP2 and pan-parasite lactate dehydrogenase (HRP2/pLDH) mRDT against polymerase chain reaction (PCR) for detection of P. falciparum among 17,051 primary school-age children from eight regions of Tanzania in 2017. According to PCR, the prevalence of P. falciparum was 19.2% (95% CI: 18.6-19.8). Using PCR as reference, the sensitivity and specificity of mRDT was 76.2% (95% CI: 74.7-77.7) and 93.9% (95% CI: 93.5-94.3), respectively. Test agreement was lowest in low transmission areas, where true-positive mRDTs were outnumbered by false-negatives due to low parasitemia. Discordant samples (mRDT-negative but PCR-positive) were screened for pfhrp2/3 deletion by real-time PCR. Among those with a parasite density sufficient for analysis, pfhrp2 deletion was confirmed in 60 samples, whereas pfhrp3 deletion was confirmed in two samples; one sample had both pfhrp2 and pfhrp3 deletions. The majority of samples with gene deletions were detected in the high-transmission Kagera region. Compared with mRDTs, PCR and other molecular methods offer increased sensitivity and are not affected by pfhrp2/3 deletions, making them a useful supplement to mRDTs in schools and other epidemiological surveys.


Subject(s)
Antigens, Protozoan , Diagnostic Tests, Routine , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Sensitivity and Specificity , Tanzania/epidemiology , Humans , Antigens, Protozoan/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Protozoan Proteins/genetics , Child , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Diagnostic Tests, Routine/methods , Gene Deletion , Female , Male , Schools , Polymerase Chain Reaction/methods , Prevalence , Rapid Diagnostic Tests
7.
Malar J ; 23(1): 71, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461239

ABSTRACT

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Subject(s)
Antimalarials , Artemisinins , Carubicin/analogs & derivatives , Malaria, Falciparum , Humans , Lumefantrine/pharmacology , Lumefantrine/therapeutic use , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Tanzania , Artemisinins/pharmacology , Artemisinins/therapeutic use , Artemether/therapeutic use , Multidrug Resistance-Associated Proteins/genetics , Artemether, Lumefantrine Drug Combination/pharmacology , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/epidemiology , Biomarkers , Drug Resistance/genetics , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
8.
Malar J ; 23(1): 79, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491359

ABSTRACT

BACKGROUND: Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS: Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS: Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION: Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Protozoan Proteins/metabolism , Malaria, Falciparum/parasitology , Genetic Variation , Tanzania , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Genotype , Microsatellite Repeats , Antigens, Protozoan/genetics
9.
medRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352311

ABSTRACT

Background: Artemisinin-based combination therapies (ACTs) are the recommended antimalarial drugs for the treatment of uncomplicated malaria. The recent emergence of artemisinin partial resistance (ART-R) in Rwanda, Uganda and Eritrea is of great concern. In Tanzania, a nationwide molecular malaria surveillance in 2021 showed a high prevalence of the Kelch13 (K13) 561H mutation in Plasmodium falciparum from the north-western region, close to the border with Rwanda and Uganda. This study was conducted in 2022 to evaluate the efficacy of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) for the treatment of uncomplicated falciparum malaria and to confirm the presence of ART-R in Tanzania. Methods: This single-arm study evaluated the efficacy of AL and ASAQ in eligible children aged six months to 10 years at Bukangara Dispensary in Karagwe District, Kagera Region. Clinical and parasitological responses were monitored for 28 days according to standard WHO protocol. Mutations in K13 gene and extended haplotypes with these mutations were analysed using Sanger and whole genome sequencing data, respectively. Findings: 176 children (88 in each AL and ASAQ group) were enrolled and all achieved the defined outcomes. PCR-corrected adequate clinical and parasitological response (ACPR) was 98.3% (95% CI: 90.8-100) and 100.0% (95% CI: 95.8-100) for AL and ASAQ, respectively. Parasitaemia on day 3 was observed in 11/88 (12.5%) and 17/88 (19.3%) in the AL and ASAQ groups, respectively. The half-life of parasitaemia was significantly higher (>6.5 hrs) in patients with parasitaemia on day 3 and/or mutations in K13 gene at enrolment. Most patients with parasitaemia on day 3 (8/11 = 72.7% in the AL group and 10/17 = 58.8% in the ASAQ group) had 561H mutation at enrolment. The parasites with K13 mutations were not similar to those from south-east Asia and Rwanda, but had the same core haplotype of a new 561H haplotype reported in Kagera in 2021. Interpretation: These findings confirm the presence of ART-R in Tanzania. A context-specific strategy to respond to artemisinin partial resistance is urgently needed. Although both AL and ASAQ showed high efficacy, increased vigilance for reduced efficacy of these ACTs and detection of ART-R in other parts of the country is critical.

10.
Sci Rep ; 14(1): 2143, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38273019

ABSTRACT

Effectiveness of dihydroartemisinin-piperaquine (DP) as seasonal malaria chemoprevention (SMC) was assessed in Nanyumbu and Masasi Districts. Between March and June 2021, children aged 3-59 months were enrolled in a cluster randomized study. Children in the intervention clusters received a monthly, 3-days course of DP for three consecutive months regardless of malaria infection status, and those in the control clusters received no intervention. Malaria infection was assessed at before the first-round and at 7 weeks after the third-round of DP in both arms. Malaria prevalence after the third-round of DP administration was the primary outcome. Chi-square tests and logistic regression model were used to compare proportions and adjust for explanatory variables. Before the intervention, malaria prevalence was 13.7% (161/1171) and 18.2% (212/1169) in the intervention and control clusters, respectively, p < 004. Malaria prevalence declined to 5.8% (60/1036) in the intervention clusters after three rounds of DP, and in the control clusters it declined to 9.3% (97/1048), p = 0.003. Unadjusted and adjusted prevalence ratios between the intervention and control arms were 0.42 (95%CI 0.32-0.55, p < 0.001) and 0.77 (95%CI 0.53-1.13, p = 0.189), respectively. SMC using DP was effective for control of malaria in the two Districts.Trial registration: NCT05874869, https://clinicaltrials.gov/ 25/05/2023.


Subject(s)
Antimalarials , Artemisinins , Malaria , Piperazines , Quinolines , Humans , Infant , Antimalarials/therapeutic use , Chemoprevention , Drug Combinations , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Quinolines/therapeutic use , Seasons , Tanzania/epidemiology , Child, Preschool
11.
medRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37986920

ABSTRACT

Background: Emergence of artemisinin partial resistance (ART-R) in Plasmodium falciparum is a growing threat to the efficacy of artemisinin combination therapies (ACT) and the efforts for malaria elimination. The emergence of Plasmodium falciparum Kelch13 (K13) R561H in Rwanda raised concern about the impact in neighboring Tanzania. In addition, regional concern over resistance affecting sulfadoxine-pyrimethamine (SP), which is used for chemoprevention strategies, is high. Methods: To enhance longitudinal monitoring, the Molecular Surveillance of Malaria in Tanzania (MSMT) project was launched in 2020 with the goal of assessing and mapping antimalarial resistance. Community and clinic samples were assessed for resistance polymorphisms using a molecular inversion probe platform. Findings: Genotyping of 6,278 samples collected countrywide in 2021 revealed a focus of K13 561H mutants in northwestern Tanzania (Kagera) with prevalence of 7.7% (50/649). A small number of 561H mutants (about 1%) were found as far as 800 km away in Tabora, Manyara, and Njombe. Genomic analysis suggests some of these parasites are highly related to isolates collected in Rwanda in 2015, supporting regional spread of 561H. However, a novel haplotype was also observed, likely indicating a second origin in the region. Other validated resistance polymorphisms (622I and 675V) were also identified. A focus of high sulfadoxine-pyrimethamine drug resistance was also identified in Kagera with a prevalence of dihydrofolate reductase 164L of 15% (80/526). Interpretation: These findings demonstrate the K13 561H mutation is entrenched in the region and that multiple origins of ART-R, similar as to what was seen in Southeast Asia, have occurred. Mutations associated with high levels of SP resistance are increasing. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region. Funding: This study was funded by the Bill and Melinda Gates Foundation and the National Institutes of Health.

12.
Malar J ; 22(1): 304, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817185

ABSTRACT

BACKGROUND: Despite significant decline in the past two decades, malaria is still a major public health concern in Tanzania; with over 93% of the population still at risk. Community knowledge, attitudes and practices (KAP), and beliefs are key in enhancing uptake and utilization of malaria control interventions, but there is a lack of information on their contribution to effective control of the disease. This study was undertaken to determine KAP and beliefs of community members and service providers on malaria, and how they might be associated with increased risk and persistence of the disease burden in North-western and Southern regions of Tanzania. METHODS: This was an exploratory study that used qualitative methods including 16 in-depth interviews (IDI) and 32 focus group discussions (FGDs) to collect data from health service providers and community members, respectively. The study was conducted from September to October 2017 and covered 16 villages within eight districts from four regions of mainland Tanzania (Geita, Kigoma, Mtwara and Ruvuma) with persistently high malaria transmission for more than two decades. RESULTS: Most of the participants had good knowledge of malaria and how it is transmitted but some FGD participants did not know the actual cause of malaria, and thought that it is caused by bathing and drinking un-boiled water, or consuming contaminated food that has malaria parasites without warming it. Reported barriers to malaria prevention and control (by FGD and IDI participants) included shortage of qualified health workers, inefficient health financing, low care-seeking behaviour, consulting traditional healers, use of local herbs to treat malaria, poverty, increased breeding sites by socio-economic activities and misconceptions related to the use of bed nets and indoor residual spraying (IRS). Among the misconceptions, some participants believed that bed nets provided for free by the government came with bedbugs while others reported that free bed nets caused impotence among men. CONCLUSION: Despite good knowledge of malaria, several risk factors, such as socio-economic and behavioural issues, and misconceptions related to the use of bed nets and IRS were reported. Other key factors included unavailability or limited access to health services, poor health financing and economic activities that potentially contributed to persistence of malaria burden in these regions. Relevant policies and targeted malaria interventions, focusing on understanding socio-cultural factors, should be implemented to reduce and finally eliminate the disease in the study regions and others with persistent transmission.


Subject(s)
Health Knowledge, Attitudes, Practice , Malaria , Male , Humans , Tanzania , Mosquito Control/methods , Malaria/epidemiology , Risk Factors
13.
PLOS Glob Public Health ; 3(8): e0002318, 2023.
Article in English | MEDLINE | ID: mdl-37603541

ABSTRACT

Tanzania is undergoing an epidemiological transition for malaria transmission with some areas of the country having <10% (hypoendemic) and other areas 10% - 50% malaria prevalence (mesoendemic). It is not known whether there is a difference in the quality of malaria case management based on endemicity in Tanzania mainland. We examined the influence of endemicity on the quality of malaria case management at health facilities. We conducted a cross-sectional analysis of 1713 health facilities in Tanzania mainland, using data collected by the National Malaria Control Program through an assessment tool to evaluate quality of malaria case management. The data was gathered from September 2017 to December 2018. Using standard quality factors, mean scores from facilities in the different endemicity regions were compared by a Student's t-test. Simple and multiple linear regression analyses were performed to determine the association between facility performance (score) and endemicity (mesoendemic vs. hypoendemic). Facilities in mesoendemic regions scored higher than those in hypoendemic regions on the overall quality of services [difference in mean scores ([Formula: see text]) = 2.52; (95% Confidence Interval (CI) 1.12, 3.91)], site readiness [[Formula: see text] = 2.97; (95% CI 1.30, 4.61)], availability of malaria reference materials [[Formula: see text] = 4.91; (95% CI 2.05, 7.76)], availability of Health Management Information System tools [[Formula: see text] = 5.86; (95% CI 3.80, 7.92)] and patient satisfaction [[Formula: see text] = 6.61; (95% CI 3.75, 9.48)]. Predictors associated with lower facility scores included; being located in a hypoendemic region [ß: -2.49; (95% CI -3.83, -1.15)] and urban area [ß: -3.84; (95% CI -5.60, -2.08)]. These findings highlight the differences in quality of malaria case management based on endemicity, but there is still a need to target improvement efforts in underperforming facilities, regardless of endemicity.

14.
Elife ; 122023 05 25.
Article in English | MEDLINE | ID: mdl-37227428

ABSTRACT

Background: Dog-mediated rabies is endemic across Africa causing thousands of human deaths annually. A One Health approach to rabies is advocated, comprising emergency post-exposure vaccination of bite victims and mass dog vaccination to break the transmission cycle. However, the impacts and cost-effectiveness of these components are difficult to disentangle. Methods: We combined contact tracing with whole-genome sequencing to track rabies transmission in the animal reservoir and spillover risk to humans from 2010 to 2020, investigating how the components of a One Health approach reduced the disease burden and eliminated rabies from Pemba Island, Tanzania. With the resulting high-resolution spatiotemporal and genomic data, we inferred transmission chains and estimated case detection. Using a decision tree model, we quantified the public health burden and evaluated the impact and cost-effectiveness of interventions over a 10-year time horizon. Results: We resolved five transmission chains co-circulating on Pemba from 2010 that were all eliminated by May 2014. During this period, rabid dogs, human rabies exposures and deaths all progressively declined following initiation and improved implementation of annual islandwide dog vaccination. We identified two introductions to Pemba in late 2016 that seeded re-emergence after dog vaccination had lapsed. The ensuing outbreak was eliminated in October 2018 through reinstated islandwide dog vaccination. While post-exposure vaccines were projected to be highly cost-effective ($256 per death averted), only dog vaccination interrupts transmission. A combined One Health approach of routine annual dog vaccination together with free post-exposure vaccines for bite victims, rapidly eliminates rabies, is highly cost-effective ($1657 per death averted) and by maintaining rabies freedom prevents over 30 families from suffering traumatic rabid dog bites annually on Pemba island. Conclusions: A One Health approach underpinned by dog vaccination is an efficient, cost-effective, equitable, and feasible approach to rabies elimination, but needs scaling up across connected populations to sustain the benefits of elimination, as seen on Pemba, and for similar progress to be achieved elsewhere. Funding: Wellcome [207569/Z/17/Z, 095787/Z/11/Z, 103270/Z/13/Z], the UBS Optimus Foundation, the Department of Health and Human Services of the National Institutes of Health [R01AI141712] and the DELTAS Africa Initiative [Afrique One-ASPIRE/DEL-15-008] comprising a donor consortium of the African Academy of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), the New Partnership for Africa's Development Planning and Coordinating (NEPAD) Agency, Wellcome [107753/A/15/Z], Royal Society of Tropical Medicine and Hygiene Small Grant 2017 [GR000892] and the UK government. The rabies elimination demonstration project from 2010-2015 was supported by the Bill & Melinda Gates Foundation [OPP49679]. Whole-genome sequencing was partially supported from APHA by funding from the UK Department for Environment, Food and Rural Affairs (Defra), Scottish government and Welsh government under projects SEV3500 and SE0421.


Subject(s)
Bites and Stings , Dog Diseases , Rabies Vaccines , Rabies , Dogs , Animals , Humans , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Contact Tracing , Cost-Benefit Analysis , Rabies Vaccines/genetics , Tanzania/epidemiology , Genomics , Bites and Stings/epidemiology , Dog Diseases/epidemiology , Dog Diseases/prevention & control
15.
Emerg Infect Dis ; 29(6): 1143-1153, 2023 06.
Article in English | MEDLINE | ID: mdl-37209670

ABSTRACT

Achieving malaria elimination requires considering both Plasmodium falciparum and non-P. falciparum infections. We determined prevalence and geographic distribution of 4 Plasmodium spp. by performing PCR on dried blood spots collected within 8 regions of Tanzania during 2017. Among 3,456 schoolchildren, 22% had P. falciparum, 24% had P. ovale spp., 4% had P. malariae, and 0.3% had P. vivax infections. Most (91%) schoolchildren with P. ovale infections had low parasite densities; 64% of P. ovale infections were single-species infections, and 35% of those were detected in low malaria endemic regions. P. malariae infections were predominantly (73%) co-infections with P. falciparum. P. vivax was detected mostly in northern and eastern regions. Co-infections with >1 non-P. falciparum species occurred in 43% of P. falciparum infections. A high prevalence of P. ovale infections exists among schoolchildren in Tanzania, underscoring the need for detection and treatment strategies that target non-P. falciparum species.


Subject(s)
Coinfection , Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Child , Plasmodium falciparum/genetics , Prevalence , Tanzania/epidemiology , Coinfection/epidemiology , Plasmodium malariae , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology
16.
Front Public Health ; 11: 976354, 2023.
Article in English | MEDLINE | ID: mdl-36875425

ABSTRACT

Background: Utilization of malaria interventions is influenced by, among other things, the level of knowledge and attitude that the community has toward the infection as well as the available interventions. This study assessed malaria knowledge, attitudes, and practices on malaria infection and interventions in Masasi and Nanyumbu districts, Tanzania. Methods: A community-based cross-sectional survey was conducted between August and September 2020, among the heads of households having at least one under-five child. Information on knowledge, attitudes, and practices on malaria infection and interventions was gathered from the heads of the households using a structured questionnaire. The knowledge level was classified into low, moderate, and high. Attitudes were classified into positive and negative, whereas the practices were classified into good and poor. Children aged between 3 and 59 months were screened for malaria infection using a malaria rapid diagnostic test (mRDT). The proportion of the households' heads with high level of knowledge was the primary outcome. Proportions were compared using Chi-square or fisher's test, and logistic regression analysis was used as appropriate. Results: A total of 1,556 household heads were interviewed, 1,167 (75.00%) were male, and according to marital status, 1,067 (68.57%) were couples. All the household heads had some knowledge of malaria, but 47.33% (736/1,555) and 13.83% (215/1,555) of them had moderate and high knowledge, respectively. The level of knowledge on malaria was significantly influenced by gender [adjusted odds ratio (aOR) = 0.72, 95.00% confidence interval (CI) = 0.56-0.94, p = 0.017], level of education (aOR = 1.50, 95.00% CI = 1.04-2.16, p = 0.03), and the occupation of the household head (aOR = 1.90, 95.00% CI = 1.22-2.96, p = 0.004). Majority of the households [83.87% (1,305/1,556)] had bed nets hanging on the sleeping spaces. Of the household heads possessing bed nets, 85.10% (514/604), 79.62% (586/736), and 95.35% (205/215) of them had a low, moderate, and high level of knowledge on malaria infection, respectively (trend x 2 = 31.53, p < 0.001). The majority [95.04% (1,474/1,551)] of the household heads perceived sleeping under the bed net to be beneficial. Furthermore, 15.56% (94/604), 14.67% (108/736), and 7.44% (16/215) of the household heads with low, moderate, and high knowledge, respectively, had children with malaria infection (trend x 2 = 9.172, p = 0.01). Conclusion: The study population had a good level of knowledge about malaria infection, and a good attitude toward malaria interventions, and the majority of them were using bed nets.


Subject(s)
Health Knowledge, Attitudes, Practice , Malaria , Child , Humans , Male , Infant , Child, Preschool , Female , Tanzania , Cross-Sectional Studies , Seasons , Chemoprevention
17.
Malar J ; 22(1): 7, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609279

ABSTRACT

BACKGROUND: It has been more than 20 years since the malaria epidemiologic shift to school-aged children was noted. In the meantime, school-aged children (5-15 years) have become increasingly more vulnerable with asymptomatic malaria prevalence reaching up to 70%, making them reservoirs for subsequent transmission of malaria in the endemic communities. Intermittent Preventive Treatment of malaria in schoolchildren (IPTsc) has proven to be an effective tool to shrink this reservoir. As of 3rd June 2022, the World Health Organization recommends IPTsc in moderate and high endemic areas. Even so, for decision-makers, the adoption of scientific research recommendations has been stifled by real-world implementation challenges. This study presents methodology, challenges faced, and mitigations used in the evaluation of the implementation of IPTsc using dihydroartemisinin-piperaquine (DP) in three councils (Handeni District Council (DC), Handeni Town Council (TC) and Kilindi DC) of Tanga Region, Tanzania so as to understand the operational feasibility and effectiveness of IPTsc on malaria parasitaemia and clinical malaria incidence. METHODS: The study deployed an effectiveness-implementation hybrid design to assess feasibility and effectiveness of IPTsc using DP, the interventional drug, against standard of care (control). Wards in the three study councils were the randomization unit (clusters). Each ward was randomized to implement IPTsc or not (control). In all wards in the IPTsc arm, DP was given to schoolchildren three times a year in four-month intervals. In each council, 24 randomly selected wards (12 per study arm, one school per ward) were chosen as representatives for intervention impact evaluation. Mixed design methods were used to assess the feasibility and acceptability of implementing IPTsc as part of a more comprehensive health package for schoolchildren. The study reimagined an existing school health programme for Neglected Tropical Diseases (NTD) control include IPTsc implementation. RESULTS: The study shows IPTsc can feasibly be implemented by integrating it into existing school health and education systems, paving the way for sustainable programme adoption in a cost-effective manner. CONCLUSIONS: Through this article other interested countries may realise a feasible plan for IPTsc implementation. Mitigation to any challenge can be customized based on local circumstances without jeopardising the gains expected from an IPTsc programme. Trial registration clinicaltrials.gov, NCT04245033. Registered 28 January 2020, https://clinicaltrials.gov/ct2/show/NCT04245033.


Subject(s)
Antimalarials , Malaria , Quinolines , Humans , Child , Antimalarials/therapeutic use , Tanzania/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Quinolines/therapeutic use , Drug Combinations
18.
Malar J ; 21(1): 361, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457087

ABSTRACT

BACKGROUND: Malaria rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen are widely used for detection of active infection with this parasite and are the only practical malaria diagnostic test in some endemic settings. External validation of RDT results from field surveys can confirm appropriate RDT performance. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 enrolling participants of all ages in households from 15 villages in four border regions of Tanzania: Geita, Kigoma, Mtwara and Ruvuma. All participants had an RDT performed in the field and provided a blood sample for later laboratory multiplex antigen detection of HRP2. In assessing the continuous HRP2 levels in participant blood versus RDT result, dose-response logistic regression provided quantitative estimates for HRP2 limit of detection (LOD). RESULTS: From the 15 study villages, 6941 persons were enrolled that had a RDT at time of enrollment and provided a DBS for later laboratory antigen detection. RDT positive prevalence for the HRP2 band by village ranged from 20.0 to 43.6%, but the magnitude of this prevalence did not have an effect on the estimated LOD of RDTs utilized in different villages. Overall, HRP2 single-target tests had a lower LOD at the 95% probability of positive RDT (4.3 ng/mL; 95% CI 3.4-5.4) when compared to pLDH/HRP2 dual target tests (5.4 ng/mL; 4.5-6.3), though this difference was not significant. With the exception of one village, all other 14 villages (93.3%) showed RDT LOD estimates at 90% probability of positive RDT between 0.5 and 12.0 ng/mL. CONCLUSIONS: Both HRP2-only and pLDH/HRP2 combo RDTs utilized in a 2017 Tanzania cross-sectional survey of border regions generally performed well, and reliably detected HRP2 antigen in the low ng/mL range. Though single target tests had lower levels of HRP2 detection, both tests were within similar ranges among the 15 villages. Comparison of quantitative HRP2 detection limits among study sites can help interpret RDT testing results when generating population prevalence estimates for malaria infection.


Subject(s)
Histidine , Malaria , Humans , Diagnostic Tests, Routine , Cross-Sectional Studies , Tanzania/epidemiology
19.
Malar J ; 21(1): 345, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36401310

ABSTRACT

BACKGROUND: Current efforts to estimate the spatially diverse malaria burden in malaria-endemic countries largely involve the use of epidemiological modelling methods for describing temporal and spatial heterogeneity using sparse interpolated prevalence data from periodic cross-sectional surveys. However, more malaria-endemic countries are beginning to consider local routine data for this purpose. Nevertheless, routine information from health facilities (HFs) remains widely under-utilized despite improved data quality, including increased access to diagnostic testing and the adoption of the electronic District Health Information System (DHIS2). This paper describes the process undertaken in mainland Tanzania using routine data to develop a high-resolution, micro-stratification risk map to guide future malaria control efforts. METHODS: Combinations of various routine malariometric indicators collected from 7098 HFs were assembled across 3065 wards of mainland Tanzania for the period 2017-2019. The reported council-level prevalence classification in school children aged 5-16 years (PfPR5-16) was used as a benchmark to define four malaria risk groups. These groups were subsequently used to derive cut-offs for the routine indicators by minimizing misclassifications and maximizing overall agreement. The derived-cutoffs were converted into numbered scores and summed across the three indicators to allocate wards into their overall risk stratum. RESULTS: Of 3065 wards, 353 were assigned to the very low strata (10.5% of the total ward population), 717 to the low strata (28.6% of the population), 525 to the moderate strata (16.2% of the population), and 1470 to the high strata (39.8% of the population). The resulting micro-stratification revealed malaria risk heterogeneity within 80 councils and identified wards that would benefit from community-level focal interventions, such as community-case management, indoor residual spraying and larviciding. CONCLUSION: The micro-stratification approach employed is simple and pragmatic, with potential to be easily adopted by the malaria programme in Tanzania. It makes use of available routine data that are rich in spatial resolution and that can be readily accessed allowing for a stratification of malaria risk below the council level. Such a framework is optimal for supporting evidence-based, decentralized malaria control planning, thereby improving the effectiveness and allocation efficiency of malaria control interventions.


Subject(s)
Malaria , Child , Humans , Cross-Sectional Studies , Tanzania/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Health Facilities , Case Management
20.
BMJ Open ; 12(11): e062147, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36332955

ABSTRACT

OBJECTIVES: There are limited data on factors influencing antibiotic prescription among insured patients. We assessed for correlates of an antibiotic prescription among insured patients. DESIGN: A cross-sectional study. SETTING: The study was conducted at the National Health Insurance Fund offices, Dar es Salaam, Tanzania. DATA SOURCE: We captured data from the claim forms, containing inpatient and outpatient treatment information for insured patients, for the month of September 2019. OUTCOME VARIABLE: Receipt of an antibiotic prescription. EXPOSURE VARIABLES: Age, sex, diagnosis, prescriber qualification, health facility level, ownership and department were exposure variables. Predictors of receipt of an antibiotic prescription were determined by Poisson regression analysis. RESULTS: Of 993 analysed patients, the mean (±SD) age was 36.3 (±23.2) years, 581 (58.5%) were females and 535 (53.9%) were adults. The prevalence of antibiotic prescription was 46.4% (95% CI 42.8% to 50.0%). Strong predictors of an antibiotic prescription were being a child (1.7, 95% CI 1.3 to 2.2); acute upper respiratory tract infection (URTI) of multiple and unspecified sites (1.6, 95% CI 1.3 to 1.4); chronic rhinitis, nasopharyngitis and pharyngitis (4.0, 95% CI 2.4 to 6.4); being attended by a clinical officer (1.9, 95% CI 1.2 to 3.0); attending a health centre (1.5, 95% CI 1.1 to 2.0); attending a public facility (1.2, 95% CI 1.0 to 1.4) and visiting an inpatient department (2.0, 95% CI 1.2 to 3.4). CONCLUSIONS: Among insured patients, being a child, acute URTI, being attended by a clinical officer or dental therapist, being attended by an assistant medical/dental officer, attending a health centre or a district hospital, attending a public health facility and visiting an inpatient department predicted an antibiotic prescription. Incorporation of these findings in revisions or establishment of targeted antimicrobial stewardship programmes may lead to better antibiotic prescribing practices that are critical for combating antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Respiratory Tract Infections , Child , Adult , Female , Humans , Adolescent , Young Adult , Middle Aged , Male , Anti-Bacterial Agents/therapeutic use , Cross-Sectional Studies , Tanzania/epidemiology , Practice Patterns, Physicians' , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Prescriptions
SELECTION OF CITATIONS
SEARCH DETAIL
...