Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mol Divers ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739230

ABSTRACT

In the present work, we successfully synthesized Se-alkyl selenopyridines 1 and 3, selenopheno[2,3-b]pyridine 2, and bis-selenopyridine 4 derivatives using an eco-friendly method by utilizing NaHSe instead of toxic hydrogen selenide. The effect of the temperature on the reaction was screening at various temperatures. The regiospecific reaction of selenopyridine 1 with bromine afforded an unexpected product 4,6-diamino-5-bromo-2-[(cyanomethyl)selenyl]-pyridine-3-carbonitrile (5), which was cyclized to selenopheno[2,3-b]pyridine (7) by refluxing in the presence of TEA. While its treatment with thiophenol and/or p-chlorothiophenol gave 8a, b. On the other hand, its reaction with aminothiophenol afforded 2-(benzo[d]-thiazol-2-yl)-5-bromoselenopheno[2,3-b]pyridine-3,4,6-triamine (9). Also, N-(2-cyano-4-methyl-5H-1-seleno-3,5,8-triazaacenaphthylen-7-yl)acetamide (11) and a novel series of selenoazo dyes 12a-d were synthesized by treatment of selenopheno[2,3-b]pyridine 2 with acetic anhydride and/or diazonium chlorides of aromatic amines, respectively. Then, we ascertained the potential activity of synthesized compounds against highly metastatic prostate cancer cells (PC-3) and osteosarcoma cells (MG-63) and found that 12a, 12b, 12c, and 12d were more cytotoxic than doxorubicin in both tested cell lines, showing nearly the same anticancer activity with IC50 values ranging from 2.59 ± 0.02 µM to 3.93 ± 0.23 µM. Mechanistically, the most potent compounds 12a and 12b proved to be potent EGFR inhibitors with IC50 values of 0.301 and 0.123 µM, respectively, compared to lapatinib as a positive reference (IC50 = 0.049 µM). Moreover, the docking results are in good agreement with the anticancer activity as well as the EGFR inhibitory activity, suggesting these two compounds as promising EGFR anticancer candidates.

2.
Life Sci ; 311(Pt B): 121187, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36403646

ABSTRACT

AIMS: Ulcerative colitis (UC) is characterized by the up-regulation of pro-inflammatory mediators, apoptotic signals, and oxidative stress that can lead to an increased risk of colorectal cancer. The present study aims to investigate the possible role of myristicin in modulating endoplasmic reticulum stress (ERS) and risk-associated conditions in acetic acid (AA)-induced UC. MATERIALS AND METHODS: Adult male rats were treated with 150 mg/kg body weight of myristicin or mesalazine orally either as pre/post treatment or post-treatment only. The gene expression of glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), and nuclear factor kappa B (NF-κB), percentage of DNA fragmentation, and serum levels of some oxidative and inflammatory markers were measured. KEY FINDINGS: The results indicated the potential upregulation of ERS, pro-apoptotic, lipid peroxidation, and pro-inflammatory cascades by induction of UC in rats. However, myristicin could effectively reverse the deteriorated effects of ulceration in colonic mucosa. It was mediated through downregulation of the ERS markers GRP78 and CHOP genes expression, reduction of NF-κB mRNA expression, DNA fragmentation, reduced lipid peroxidation, myeloperoxidase (MPO) activity and pro-inflammatory markers (Tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß) and cyclo­oxygenase (COX-2) activity). Accompanied by elevated levels of IL-10, colonic Nuclear erythroid factor (Nrf-2) and Heme oxygenase (HO-1) activity as well as blood antioxidant enzymes activity. Results of docking might confirm the biological results of our study. SIGNIFICANCE: Myristicin could effectively modulate important stress, and inflammatory effectors and protect mucosal DNA from oxidative damage which can serve as a promising candidate for the treatment of ulcerative colitis.


Subject(s)
Allylbenzene Derivatives , Colitis, Ulcerative , Animals , Male , Rats , Antioxidants/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Endoplasmic Reticulum Stress , NF-kappa B/metabolism
3.
RSC Adv ; 12(39): 25204-25216, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36199335

ABSTRACT

Novel quinoxaline derivatives (2a-d, 3, 4a, 4b and 5-15) have been synthesized via the reaction of 4-methyl-3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (1) with different aldehydes, ketones, diketones, ketoesters, as well as hydrazine, phenyl isothiocyanate, carbon disulphide. The synthesized products have been screened for their in vitro anticancer and COX inhibitory activities. Most of the synthesized compounds exhibited good anticancer and COX-2 inhibitory activities. MTT assay revealed that compounds 11 and 13 were the most potent and exhibited very strong anticancer activity against the three cancer cell lines with IC50 values ranging from 0.81 µM to 2.91 µM. Compounds 4a and 5 come next and displayed strong anticancer activity against the three cancer cell lines with IC50 values ranging from 3.21 µM to 4.54 µM. Mechanistically, compounds 4a and 13 were the most active and potently inhibited EGFR with IC50 = 0.3 and 0.4 µM, respectively. Compounds 11 and 5 come next with IC50 = 0.6 and 0.9 µM, respectively. Moreover, compounds 11 and 13 were the most potent as COX-2 inhibitors and displayed higher potency against COX-2 (IC50 = 0.62 and 0.46 µM, respectively) more than COX-1 (IC50 = 37.96 and 30.41 µM, respectively) with selectivity indexes (SI) of 61.23 and 66.11, respectively. Compounds 4a and 5 comes next with IC50 = 1.17 and 0.83 µM and SI of 24.61 and 48.58, respectively. Molecular docking studies into the catalytic binding pocket of both protein receptors, EGFR and COX-2, showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and Veber's standard were calculated and revealed that compounds 4a, 5, 11 and 13 had a reasonable drug-likeness with acceptable physicochemical properties. Therefore, based on the obtained biological results accompanied with the docking study and physicochemical parameters, it could be concluded that compounds 4a, 5, 11 and 13 could be used as promising orally absorbed dual anti-inflammatory agents via inhibition of COX-2 enzyme and anticancer candidates via inhibition of EGFR enzyme and could be used as a future template for further investigations.

4.
Bioorg Chem ; 129: 106171, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36166898

ABSTRACT

Uncontrolled inflammation predisposes to pleiotropic effects leading to cancer development thanks to promoting all stages of tumorigenesis. Therefore, cancer-associated inflammation has been delegated as the seventh hallmark of cancer. Thus, raging the war against both inflammation and cancer via the innovation of bioactive agents with dual anti-inflammatory and anticancer activities is a necessity. Herein, a novel series of pyrazole-chalcone analogs of Lonazolac (7a-g and 8a-g) have been synthesized and investigated for their in vitro anticancer activity against four cancer cell lines using the MTT assay method. Among all, hybrid 8g was the most potent against three cancer cell lines, HeLa, HCT-116, and RPMI-822 with IC50 values of 2.41, 2.41, and 3.34 µM, respectively. In contrast, hybrid 8g showed moderate inhibitory activity against MCF-7 with IC50 28.93 µM and with a selectivity profile against MCF-10A (non-cancer cells). Mechanistically, hybrid 8g was the most potent inhibitor against tubulin polymerization (IC50 = 4.77 µM), suggesting tubulin as a molecular target and explaining the observed cytotoxicity of hybrid 8g. This was mirrored by the detected potent pre-G1 apoptosis induction and G2/M cell cycle arrest. Moreover, hybrid8gexhibited selectivity against COX-2 (IC50 = 5.13 µM) more than COX-1 (IC50 = 33.46 µM), indicating that 8g may have lower cardiovascular side effects, but is still not potent as celecoxib (COX-2 IC50 = 0.204 µM, COX-1 = 35.8 µM). Notably, hybrid 8g showed promising inhibitory activity towards 5-LOX (IC50 = 5.88 µM). Finally, the anti-inflammatory activity of hybrid8 g was confirmed by high iNOS and PGE2 inhibitory activities in LPS-stimulated RAW cells with IC50 values of4.93 µM and 10.98 µM, respectively, that accompanied by showingthe most potent inhibition of NO release (70.61 % inhibition rate). Molecular docking studies of hybrid 8g confirmed good correlations with the executed biological results. Furthermore, hybrid 8g had good drug-likeness and suitable physicochemical properties. Taken together, the combined results suggested hybrid8gas a promising orally administered candidate in the journey of repurposing NSAIDs for cancer chemopreventionand treatment.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Humans , Molecular Docking Simulation , Tubulin Modulators/pharmacology , Chalcone/pharmacology , Chalcones/pharmacology , Tubulin/metabolism , Cyclooxygenase 2/metabolism , Structure-Activity Relationship , Pyrazoles/pharmacology , Pyrazoles/chemistry , Anti-Inflammatory Agents/pharmacology , Inflammation , Antineoplastic Agents/chemistry , Molecular Structure , Drug Screening Assays, Antitumor , Cell Proliferation , Cell Line, Tumor
5.
Molecules ; 27(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163939

ABSTRACT

Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a-k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Oxazolone/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Sulfonamides/chemistry , Virulence/drug effects , Biofilms/drug effects , Quorum Sensing , Virulence Factors/metabolism
6.
Bioorg Chem ; 119: 105564, 2022 02.
Article in English | MEDLINE | ID: mdl-34959179

ABSTRACT

Herein, we report design and synthesis of twenty-one dual PIM-1/HDAC inhibitors utilizing 3-cyanopyridines as a novel cap moiety linked with aliphatic /aromatic linker bearing carboxylic acid 3a-g, hydroxamic acid 4a-g or 2-aminoanilide moieties 5a-g as zinc-binding group. Most of the target hybrids revealed promising growth inhibition according to one dose NCI protocol against 60 cancer cell lines. Meanwhile, hydroxamic acids 4b, 4d and 4e displayed strong and broad-spectrum activity against nine tumor subpanels tested (GI50 0.176-8.87 µM); 4d displayed strong antiproliferative activity with GI50 ≤ 3 µM against different cancer cell lines (GI50 range from 0.325 to 2.9 µM). Furthermore, 4a, 4d-4g and 5f manifested a high inhibitory activity against HDACs 1 and 6 isozymes; 4g, displayed potent HDAC 1 and 6 inhibitory activity (45.01 ± 2.1 and 19.78 ± 1.1 nM) more than the reference SAHA (51.54 ± 2.4 and 21.38 ± 1.2 nM, respectively), while 4f was more potent (30.09 ± 1.4 nM) than SAHA against HDAC 1 and less potent (30.29 ± 1.7 nM) than SAHA against HDAC 6. Hybrids 4b, 4d, 4e and 4f exhibited potent PIM-1 inhibitory activity; 4d showed comparable activity to quercetin (IC50 of 343.87 ± 16.6 and 353.76 ± 17.1 nM, respectively); it exhibited pre G1 apoptosis and arrest cell cycle at G2/M phase. Moreover, it revealed good binding into pocket of HDACs 1,6 and PIM-1 kinase enzymes with good correlation with biological results. Moreover, 4b, 4d and 4e had reasonable drug-likeness properties according to Lipinski's rule. However, multitarget inhibitor of PIM-1/HDAC is a promising strategy in anticancer drug discovery; the most potent hybrids require further in vivo and clinical investigations.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
7.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832959

ABSTRACT

Recently, combining histone deacetylase (HDAC) inhibitors with chemotherapeutic drugs or agents, in particular epidermal growth factor receptor (EGFR) inhibitors, is considered to be one of the most encouraging strategy to enhance the efficacy of the antineoplastic agents and decrease or avoid drug resistance. Therefore, in this work, based on introducing 3,4,5-trimethoxy phenyl group as a part of the CAP moiety, in addition to incorporating 4-6 aliphatic carbons linker and using COOH or hydroxamic acid as ZBG, 12 novel EGFR/HDAC hybrid inhibitors 2a-c, 3a-c, 4a-c and 5a-c were designed, constructed, and evaluated for their anticancer activities against 4 cancer cell lines (HepG2, MCF-7, HCT116 and A549). Among all, hybrids with hydroxamic acid 4a-c and 5a, exhibited the highest inhibition against all cancer cell lines with IC50 ranging from 0.536 to 4.892 µM compared to Vorinostat (SAHA) with IC50 ranging from 2.43 to 3.63 µM and Gefitinib with IC50 ranging from 1.439 to 3.366 µM. Mechanistically, the most potent hybrids 4a-c and 5a were further tested for their EGFR and HDACs inhibitory activities. The findings disclosed that hybrid 4b displayed IC50 = 0.063 µM on the target EGFR enzyme which is slightly less potent than the standard Staurosporine (IC50 = 0.044 µM). Furthermore, hybrid 4b showed less HDAC inhibitory activity IC50 against HDAC1 (0.148), 2 (0.168), 4 (5.852), 6 (0.06) and 8 (2.257) than SAHA. In addition, the investigation of apoptotic action of the most potent hybrid 4b showed a significant increase in Bax level up to 3.75-folds, with down-regulation in Bcl2 to 0.42-fold, compared to the control. Furthermore, hybrid 4b displayed an increase in the levels of Caspases 3 and 8 by 5.1 and 3.15 folds, respectively. Additionally, the cell cycle analysis of hybrid 4b revealed that it showed programmed cell death and cell cycle arrest at G1/S phase. Moreover, all these outcomes together with the molecular docking study recommended the rationalized target hybrids 4a-c and 5a, particularly 4b, may be considered to be promising lead candidates for discovery of novel anticancer agents via dual inhibition of both EGFR/HDAC enzymes.

8.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205768

ABSTRACT

Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Coronavirus 3C Proteases/chemistry , Porifera/chemistry , Porifera/metabolism , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/drug effects , Amino Sugars/chemistry , Amino Sugars/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Biological Products/isolation & purification , Biological Products/pharmacokinetics , Computational Biology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
9.
J Enzyme Inhib Med Chem ; 36(1): 1067-1078, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34027787

ABSTRACT

Two series of chalcone/aryl carboximidamide hybrids 4a-f and 6a-f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chalcone/pharmacology , Dinoprostone/antagonists & inhibitors , Drug Design , Edema/drug therapy , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Nitric Oxide Synthase Type II/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan , Cells, Cultured , Chalcone/chemical synthesis , Chalcone/chemistry , Dinoprostone/metabolism , Dose-Response Relationship, Drug , Edema/chemically induced , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Structure-Activity Relationship
10.
Bioorg Chem ; 111: 104885, 2021 06.
Article in English | MEDLINE | ID: mdl-33838559

ABSTRACT

New antibacterial drugs are urgently needed to tackle the rapid rise in multi-drug resistant bacteria. DNA gyrase is a validated target for the development of new antibacterial drugs. Thus, in the present investigation, a novel series of 1,2,4-oxadiazole-chalcone/oxime (6a-f) and (7a-f) were synthesized and characterized by IR, NMR (1H and 13C) and elemental analyses. The title compounds were evaluated for their in-vitro antimicrobial activity by the modified agar diffusion method as well as their E. coli DNA gyrase inhibitory activity. The minimum inhibitory concentration (MIC) and the structure activity relationships (SARs) were evaluated. Among all, compounds 6a, 6c-e, 7b and 7e were the most potent and proved to possess broad spectrum activity against the tested Gram-positive and Gram-negative organisms. Additionally, compounds 6a (against S. aureus), 6c (against B. subtilis and E. hirae), 6e (against E. hirae), 6f, 7a and 7c (against E. coli) and 7d (against B. subtilis), with MIC value of 3.12 µM were two-fold more potent than the standard ciprofloxacin (MIC = 6.25 µM). Mechanistically, compounds 6c, 7c, 7e and 7b had good inhibitory activity against E. coli gyrase with IC50 values of 17.05, 13.4, 16.9, and 19.6 µM, respectively, in comparison with novobiocin (IC50 = 12.3 µM) and ciprofloxacin (IC50 = 10.5 µM). The molecular docking results at DNA gyrase active site revealed that the most potent compounds 6c and 7c have binding mode and docking scores comparable to that of ciprofloxacin and novobiocin suggesting their antibacterial activity via inhibition of DNA gyrase. Finally, the predicted parameters of Lipinski's rule of five and ADMET analysis showed that 6c and 7c had good drug-likeness and acceptable physicochemical properties. Therefore, the hybridization of the chalcone and oxadiazole moieties could be promising lead as antibacterial candidate which merit further future structural optimizations.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , Drug Design , Molecular Docking Simulation , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Dose-Response Relationship, Drug , Enterococcus/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
11.
Bioorg Chem ; 112: 104920, 2021 07.
Article in English | MEDLINE | ID: mdl-33910078

ABSTRACT

DNA gyrase and topoisomerase IV (topo IV) inhibitors are among the most interesting antibacterial drug classes without antibacterial pipeline representative. Twenty-four new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids were developed and tested against DNA gyrase and topoisomerase IV from Escherichia coli and Staphylococcus aureus. The most potent compounds 4c, 4e, 4f, and 5e displayed an IC50 of 34, 26, 32, and 90 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). The activities of 4c, 4e, 4f, and 5e on DNA gyrase from S. aureus were weaker than those on E. coli gyrase. Compound 4e showed IC50 values (0.47 µM and 0.92 µM) against E. coli topo IV and S. aureus topo IV, respectively in comparison to novobiocin (IC50 = 11, 27 µM, respectively). Antibacterial activity against Gram-positive and Gram-negative bacterial strains has been studied. Some compounds have demonstrated superior antibacterial activity to ciprofloxacin against some of the bacterial strain studied. The most active compounds in this study showed no cytotoxic effect with cell viability>86%. Finally, a molecular docking analysis was performed to investigate the binding mode and interactions of the most active compounds to the active site of DNA gyrase and topoisomerase IV (topo IV) enzymes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Design , Oxadiazoles/pharmacology , Quinolines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Triazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Escherichia coli/enzymology , Microbial Sensitivity Tests , Molecular Structure , Oxadiazoles/chemistry , Quinolines/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Triazoles/chemistry
12.
Pharmacol Rep ; 73(3): 891-906, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33389728

ABSTRACT

BACKGROUND: Quinolones are well known antibacterial chemotherapeutics. Furthermore, they were reported for other activities such as anticancer and urease inhibitory potential. Modification at C7 of quinolones can direct these compounds preferentially toward target molecules. METHODS: Different derivatives of ciprofloxacin by functionalization at the piperazinyl N-4 position with arylidenehydrazinecarbonyl and saturated heterocyclic-carbonyl moieties have been synthesized and characterized using different spectral and analytical techniques. The synthesized compounds were evaluated for anticancer, antibacterial, and urease inhibitory activities. RESULTS: Among the synthesized compounds derivatives 3f and 3g experienced a potent antiproliferative activity against the breast cancer BT-549 cell line, recording growth percentages of 28.68% and 6.18%, respectively. Additionally, compound 3g revealed a remarkable antitumor potential toward the colon cancer HCT-116 cells (growth percentage 14.76%). Activity of compounds 3f and 3g against BT-549 cells was comparable to doxorubicin (IC50 = 1.84, 9.83, and 1.29 µM, respectively). Test compounds were less active than their parent drug, ciprofloxacin toward Klebsiella pneumoniae and Proteus mirabilis. However, derivative 4a showed activity better than chloramphenicol against Klebsiella pneumoniae (MIC = 100.64 and 217.08 µM, respectively). Meanwhile, many of the synthesized compounds revealed a urease inhibitory activity greater than their parent. Compound 3i was the most potent urease inhibitor with IC50 of 58.92 µM, greater than ciprofloxacin and standard inhibitor, thiourea (IC50 = 94.32 and 78.89 µM, respectively). CONCLUSION: This study provided promising derivatives as lead compounds for development of anticancer agents against breast and colon cancers, and others for optimization of urease inhibitors.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Ciprofloxacin/pharmacology , Enzyme Inhibitors/pharmacology , Urease/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor/methods , HCT116 Cells , Humans , Klebsiella pneumoniae/drug effects , Molecular Docking Simulation/methods , Proteus mirabilis/drug effects , Structure-Activity Relationship , Thiourea/pharmacology
13.
Eur J Med Chem ; 209: 112904, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33077264

ABSTRACT

Despite the encouraging clinical progress of chemotherapeutic agents in cancer treatment, innovation and development of new effective anticancer candidates still represents a challenging endeavor. With 15 million death every year in 2030 according to the estimates, cancer has increased rising of an alarm as a real crisis for public health and health systems worldwide. Therefore, scientist began to introduce innovative solutions to control the cancer global health problem. One of the promising strategies in this issue is the multitarget or smart hybrids having two or more pharmacophores targeting cancer. These rationalized hybrid molecules have gained great interests in cancer treatment as they are capable to simultaneously inhibit more than cancer pathway or target without drug-drug interactions and with less side effects. A prime important example of these hybrids, the HDAC hybrid inhibitors or referred as multitargeting HDAC inhibitors. The ability of HDAC inhibitors to synergistically improve the efficacy of other anti-cancer drugs and moreover, the ease of HDAC inhibitors cap group modification prompt many medicinal chemists to innovate and develop new generation of HDAC hybrid inhibitors. Notably, and during this short period, there are four HDAC inhibitor hybrids have entered different phases of clinical trials for treatment of different types of blood and solid tumors, namely; CUDC-101, CUDC-907, Tinostamustine, and Domatinostat. This review shed light on the most recent hybrids of HDACIs with one or more other cancer target pharmacophore. The designed multitarget hybrids include topoisomerase inhibitors, kinase inhibitors, nitric oxide releasers, antiandrogens, FLT3 and JAC-2 inhibitors, PDE5-inhibitors, NAMPT-inhibitors, Protease inhibitors, BRD4-inhibitors and other targets. This review may help researchers in development and discovery of new horizons in cancer treatment.


Subject(s)
Antineoplastic Agents/chemistry , Histone Deacetylase Inhibitors/chemistry , Androgen Antagonists/metabolism , Animals , Antineoplastic Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Daunorubicin/chemistry , Daunorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Molecular Targeted Therapy , Morpholines/chemistry , Morpholines/pharmacology , Nicotinamide Phosphoribosyltransferase/metabolism , Nitric Oxide/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Structure-Activity Relationship , Transcription Factors/metabolism , fms-Like Tyrosine Kinase 3/metabolism
14.
Bioorg Chem ; 105: 104439, 2020 12.
Article in English | MEDLINE | ID: mdl-33161252

ABSTRACT

The development of NSAIDs/iNOS inhibitor hybrids is a new strategy for the treatment of inflammatory diseases by suppression of the overproduction of PGE2 and NO. A novel series of aryl carboximidamides 4a-g and their cyclized 3-aryl-1,2,4-oxadiazoles 5a-g counterparts derived from indomethacin 1 were synthesized. Most of the target compounds displayed lower LPS-induced NO production IC50 in RAW 264.7 cells and potent in vitro iNOS and PGE2 inhibitory activity than indomethacin. Moreover, in carrageenan-induced rat paw oedema method, most of them exhibited higher in vivo anti-inflammatory activity than the reference drug indomethacin. Notably, 4 hrs after carrageenan injection, compound 4a proved to be the most potent anti-inflammatory agent in this study, with almost two- and eight-fold more active than the reference drugs indomethacin (1) and celecoxib, respectively. Compound 4a proved to be inhibitor to LPS-induced NO production, iNOS activity and PGE2 with IC50 of 10.70 µM, 2.31 µM, and 29 nM; respectively. Compounds 4a and 5b possessed the lowest ulcerogenic liabilities (35% and 38%, respectively) compared to 1. Histopathological analysis revealed that compounds 4a and 5b demonstrated reduced degeneration and healing of ulcers. Molecular docking studies into the catalytic binding pocket of the iNOS protein receptor (PDB ID: 1r35) showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and ADMET analysis were calculated where compound 4a had reasonable drug-likeness with acceptable physicochemical properties so it could be used as promising orally absorbed anti-inflammatory therapy and entitled to be used as future template for further investigations.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Dinoprostone/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Indomethacin/chemistry , Nitric Oxide Synthase Type II/antagonists & inhibitors , Oxadiazoles/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Carrageenan/chemistry , Celecoxib/metabolism , Dose-Response Relationship, Drug , Edema/drug therapy , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Lipopolysaccharides/chemistry , Male , Mice , Molecular Docking Simulation , Molecular Structure , Nitric Oxide/metabolism , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacokinetics , Oximes/chemistry , RAW 264.7 Cells , Rats
15.
Bioorg Chem ; 105: 104352, 2020 12.
Article in English | MEDLINE | ID: mdl-33080494

ABSTRACT

PDE5 targeting represents a new and promising strategy for apoptosis induction and inhibition of tumor cell growth due to its over-expression in diverse types of human carcinomas. Accordingly, we report the synthesis of series of pyrazolo[3,4-d]pyrimidin-4-one carrying quinoline moiety (11a-r) with potential dual PDE5 inhibition and apoptotic induction for cancer treatment. These hybrids were structurally elucidated and characterized with variant spectroscopic techniques as 1H NMR, 13C NMR and elemental analysis. The assessment of their anticancer activities has been declared. All the rationalized compounds 11a-r have been selected for their cytotoxic activity screening by NCI against 60 cell lines. Compounds 11a, 11b, 11j and 11k were the most active hybrids. Among all, compound 11j was further selected for five dose tesing and it displayed outstanding activity with strong antitumor activity against the nine tumor subpanels tested with selectivity ratios ranging from 0.019 to 8.3 at the GI50 level. Further, the most active targets 11a, b, j and k were screened for their PDE5 inhibitory activity, compound 11j (with IC50 1.57 nM) exhibited the most potent PDE5 inhibitory activity. Moreover, compound 11j is also showed moderate EGFR inhibition with IC50 of 5.827 ± 0.46 µM, but significantly inhibited the Wnt/ß-catenin pathway with IC501286.96 ± 12.37 ng/mL. In addition, compound 11j induced the intrinsic apoptotic mitochondrial pathway in HepG2 cells as evidenced by the lower expression levels of the anti-apoptotic Bcl-2 protein, and the higher expression of the pro-apoptotic protein Bax, p53, cytochrome c and the up-regulated active caspase-9 and caspase-3 levels. All results confirmed by western blotting assay. Compound 11j exhibit pre G1 apoptosis and cell cycle arrest at G2/M phase. In conclusion, hybridization of quinoline moiety with the privileged pyrazolo[3,4-d]pyrimidinon-4-one structure resulted in highly potent anticancer agent, 11j, which deserves more study, in particular, in vivo and clinical investiagtions, and it is expected that these results would be applied for more drug discovery process.


Subject(s)
Antineoplastic Agents/chemical synthesis , Phosphodiesterase 5 Inhibitors/chemical synthesis , Quinolines/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspases, Effector/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cytochromes c/metabolism , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Structure , Phosphodiesterase 5 Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Quinolines/pharmacology , bcl-2-Associated X Protein/metabolism
16.
Molecules ; 25(14)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650556

ABSTRACT

Two sets of diphenyl ether derivatives incorporating five-membered 1,3,4-oxadiazoles, and their open-chain aryl hydrazone analogs were synthesized in good yields. Most of the synthesized compounds showed promising in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Three diphenyl ether derivatives, namely hydrazide 3, oxadiazole 4 and naphthylarylidene 8g exhibited pronounced activity with minimum inhibitory concentrations (MICs) of 0.61, 0.86 and 0.99 µg/mL, respectively compared to triclosan (10 µg/mL) and isoniazid (INH) (0.2 µg/mL). Compounds 3, 4, and 8g showed the InhA reductase enzyme inhibition with higher IC50 values (3.28-4.23 µM) in comparison to triclosan (1.10 µM). Correlation between calculated physicochemical parameters and biological activity has been discussed which justifies a strong correlation with respect to the inhibition of InhA reductase enzyme. Molecular modeling and drug-likeness studies showed good agreement with the obtained biological evaluation. The structural and experimental information concerning these three InhA inhibitors will likely contribute to the lead optimization of new antibiotics for M. tuberculosis.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Enzyme Inhibitors , Mycobacterium tuberculosis/enzymology , Oxidoreductases , Triclosan/analogs & derivatives , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Chlorocebus aethiops , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Vero Cells
17.
Bioorg Chem ; 99: 103797, 2020 06.
Article in English | MEDLINE | ID: mdl-32247939

ABSTRACT

Twenty-five valproic acid conjugates have been designed and synthesized. All target compounds were explored for their in vitro anti-proliferative activities using the MTT-based assay against four human cancer cell lines includingliver (HePG2), colon (HCT116), breast (MCF7) and cervical (HeLa) carcinoma cell lines. Out of six valproic acid-amino acid conjugates 2a-f. Only cysteine containing conjugate 2f showed the significant activity (IC50 9.10 µM against HePG2 and 6.81 µM against HCT116). However conjugate 2j showed broad-spectrum antitumor activity against all cell lines tested. In addition, conjugates 4j and 4k which contains phenyl hydrazide and hydroxamic acid group, respectively, also showed broad spectrum activity. Furthermore, six compounds were screened for HDAC 1-9 isozymes inhibitory activities. Compounds 2j, 4j and 4k manifested a higher inhibitory activity more than valproic acid but less than SAHA. In addition, the in vivo antitumor screening of 2j, 4j and 4k was done and the results have shown that 2j, 4j and 4k, particularly 4j, showed a significant decrease in tumor size and presented a considerable decrease in viable EAC count. Docking study of selectedcompound 4j revealed that it can bind nicely to the binding pocket of HDAC 1, 2, 3, 4 and HDAC 8. The results suggest that compounds 2j, 4j and 4k, particularly 4j, may be promising lead candidates for the development of novel targeted anti-tumor drug potentially via inhibiting HDACs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Valproic Acid/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Valproic Acid/chemical synthesis , Valproic Acid/chemistry
18.
RSC Adv ; 10(38): 22730-22741, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-35514559

ABSTRACT

A new triterpenoidal saponin identified as 3-O-[ß-d-glucopyranosyl-(1 → 2)-ß-d-glucopyranosyl-(1 → 4)-ß-d-xylopyranosyl]-2ß,3ß,16α-trihydroxyolean-12-en-23,28-dioic acid-28-O-α-l-rhamnopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-ß-d-glucopyranosyl-(1 → 2)-α-l-arabinopyranoside 1 together with a new oleanane triterpene identified as 2ß,3ß,13α,22α-tetrahydroxy olean-23,28-dioic acid 2 and 6 known compounds (3-8) have been isolated from Gladiolus segetum Ker-Gawl corms. The structural elucidation of the isolated compounds was confirmed using different chemical and spectroscopic methods, including 1D and 2D NMR experiments as well as HR-ESI-MS. Moreover, the in vitro cytotoxic activity of the fractions and that of the isolated compounds 1-8 were investigated against five human cancer cell lines (PC-3, A-549, HePG-2, MCF-7 and HCT-116) using doxorubicin as a reference drug. The results showed that the saponin fraction exhibited potent in vitro cytotoxic activity against the five human cancer cell lines, whereas the maximum activity was exhibited against the PC-3 and A-549 cell lines with the IC50 values of 1.13 and 1.98 µg mL-1, respectively. In addition, compound 1 exhibited potent activity against A-549 and PC-3 with the IC50 values of 2.41 µg mL-1 and 3.45 µg mL-1, respectively. Interestingly, compound 2 showed the maximum activity against PC-3 with an IC50 of 2.01 µg mL-1. These biological results were in harmony with that of the molecular modeling study, which showed that the cytotoxic activity of compound 2 might occur through the inhibition of the HER-2 enzyme.

19.
RSC Adv ; 10(45): 26895-26916, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-35515773

ABSTRACT

The global outbreak of COVID-19 viral infection is associated with the absence of specific drug(s) for fighting this viral infection. About 10 million people are already infected, about 500 000 deaths all over the world to date. Great efforts have been made to find solutions for this viral infection, either vaccines, monoclonal antibodies, or small molecule drugs; this can stop the spread of infection to avoid the expected human, economic and social catastrophe associated with this infection. In the literature and during clinical trials in hospitals, several FDA approved drugs for different diseases have the potential to treat or reduce the severity of COVID-19. Repurposing of these drugs as potential agents to treat COVID-19 reduces the time and cost to find effective COVID-19 agents. This review article summarizes the present situation of transmission, pathogenesis and statistics of COVID-19 in the world. Moreover, it includes chemistry, mechanism of action at the molecular level of the possible drug molecules which are liable for redirection as potential COVID-19 therapeutic agents. This includes polymerase inhibitors, protease inhibitors, malaria drugs, lipid lowering statins, rheumatoid arthritis drugs and some miscellaneous agents. We offer research data and knowledge about the chemistry and biology of potential COVID-19 drugs for the research community in this field.

20.
RSC Adv ; 10(60): 36920-36929, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-35517980

ABSTRACT

Metabolic profiling of the crude methanolic extract of Ficus benghalensis leaves has revealed the presence of different phenolic and nitrogenous compounds including cerebrosides and tetrapyrrole pigments. A phytochemical study of the ethyl acetate fraction resulted in the identification of three known compounds, namely carpachromene (1), alpha amyrine acetate (2), and mucusoside (3) together with one new fatty acid glycoside, named 2-O-α-l-rhamnopyranosyl-hexacosanoate-ß-d-glucopyranosyl ester (4). The compounds were identified using 1D, 2D NMR, and HR-ESIMS techniques as well as via comparison to other literature. Studies on the acetylcholinesterase inhibition potential and antioxidant activity were carried out on the total methanolic leaf extract, ethyl acetate fraction, and the isolated compounds. The results revealed the potent acetylcholinesterase inhibition of mucusoside alongside a new compound. Docking studies were also performed to confirm the possible interaction between the isolated compounds and acetylcholinesterase accompanying Alzheimer's disease progress.

SELECTION OF CITATIONS
SEARCH DETAIL
...