Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; 42(10): 5053-5071, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38764131

ABSTRACT

The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.


Subject(s)
Hydrogen Bonding , Molecular Docking Simulation , Crystallography, X-Ray , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/metabolism , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/pharmacology , Molecular Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Models, Molecular , Nitriles/chemistry , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship , Humans
2.
J Biomol Struct Dyn ; : 1-20, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321917

ABSTRACT

Quinoxaline derivatives are an important class of heterocyclic compounds in which N replaces one or more carbon atoms of the naphthalene ring and exhibit a wide spectrum of biological activities and therapeutic applications. As a result, we were encouraged to explore a new synthetic approach to quinoxaline derivatives. In this work, we synthesized two new derivatives namely, ethyl 4-(2-ethoxy-2-oxoethyl)-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (2) and 3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (3) respectively. Their structures were confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis is performed to understand the nature and magnitude of intermolecular interactions in the crystal packing. Density functional theory using the wb97xd/def2-TZVP method was chosen to explore their reactivity, electronic stability and optical properties. Charge transfer (CT) and orbital energies were analyzed via natural population analysis (NPA), and frontier molecular orbital (FMO) theory. The calculated excellent static hyperpolarizability (ßo) indicates nonlinear optical (NLO) properties for 2 and 3. Both compounds show potent activity against c-Jun N-terminal kinases 1 (JNK 1) based on structural activity relationship studies, further subjected to molecular docking, molecular dynamics and ADMET analysis to understand their potential as drug candidates.Communicated by Ramaswamy H. Sarma.

3.
Mol Divers ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324159

ABSTRACT

Dicyandiamide (DCD) reacted with amino acids 1a-f to produce biguanides 2 and 4 and guanidine pyrazolones 3, 5, 6, 7, and 8, according to the reaction. DCD exhibited the following reactions: imidodicarbonimidicdiamide 9, diazocan-2-ylguanidine 10, methyl biguanidylthion 11, N-carbamothioylimidodicarbonimidicdiamide 12, 2-guanidinebenzoimidazole 13a, 2-guanidinylbenzoxazole 13b, and 2-guanidinylbenzothiazol 13c. These reactions were triggered by 6-amino caproic acid, thioacetamide, thiourea, o-aminophenol, o-aminothiophenol, and anthranilic acid, respectively. Compound 2 had the least antimicrobial activity, while compound 13c demonstrated the most antibacterial impact against all bacterial strains. Furthermore, in terms of antiglycation efficacy (AGEs), 12, 11, and 7 were the most effective AGE cross-linking inhibitors. Eight and ten, which showed a considerable inhibition on cross-linking AGEs, come next. Compounds 4 and 6 on the other hand have shown the least suppression of AGE production. The most promising antiglycation scaffolds 8, 11, and 12 in the Human serum albumin (HAS) active site were shown to be able to adopt crucial binding interactions with important amino acids based on the results of in silico molecular docking. The most promising antiglycation compounds 8, 11, and 12 were also shown to have better hydrophilicity, acceptable lipophilicity, gastrointestinal tract absorption (GIT), and blood-brain barrier penetration qualities when their physicochemical properties were examined using the egg-boiled method.

4.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305762

ABSTRACT

New vanillin derivatives, namely, ethyl (4-formyl-2-methoxyphenoxy)acetate (2a) and 2-(4-formyl-2-methoxyphenoxy)-N-phenylacetamide (2b), respectively, were synthesized and characterized by NMR (1H and 13C), IR, mass spectra and confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis was performed to probe intra- and intermolecular interactions and surface reactivity. 2D fingerprint plots (FP) were used to study the nature and percentage contribution of intermolecular interactions leading to the formation of the crystal unit. Density functional theory (DFT) simulations were used to obtain the electronic structure and reactivity of the new molecules. Natural population analysis (NPA) and frontier molecular orbital (FMO) calculations reveal significant charge transfer and a reduced HOMO-LUMO gap up to 4.34 eV for 2b. Bader's quantum theory of atoms in molecules (QTAIM) study is utilized to understand the surface topological and bonding nature of 2a and 2b. The performed molecular electrostatic potential (MESP) and density of states (DOS) study further suggest sites likely to be attractive to incoming reagents. At the same time, hyperpolarizability (ßo) is used to characterize the nonlinear optical properties, and TD-DFT study shows the excitation energy and absorption behavior. In silico studies were performed, including docking, binding free energies (MMBGSA) and molecular dynamics simulations. Compounds 2a and 2b were docked with RdRp of SARS-Cov-2, and the MMBGSA for 2a and 2b were -30.70 and -28.47 kcal/mol, respectively, while MD simulation showed the stability of protein-ligand complexes.Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385483

ABSTRACT

Quinoxaline represents one of the most important classes of heterocyclic compounds, which have exhibited a wide range of biological activities and industrial importance in many different fields. In this regard, we have synthetized two new quinoxaline derivatives. Their structures were confirmed by single-crystal X-ray analysis. The compounds show potent activity against adenosine receptors A2AAR based on structural activity relationship studies. Further molecular docking, molecular dynamics, ADMET analysis, and DFT (density functional theory) calculations were performed to understand the titled compound's future drug candidacy. DFT computations confirmed the good stability of the synthesized compounds, as evidenced by the optimized molecular geometry, HOMO-LUMO energy gap, and intermolecular interactions. NBO analysis confirmed intermolecular interactions mediated by lone pair, bonding, and anti-bonding orbitals. All DFT findings were consistent with experimental results, indicating that the synthesized molecules are highly stable. These findings suggest that the synthesized compounds are promising candidates for further development as drugs for the treatment of A2AAR-related diseases.Communicated by Ramaswamy H. Sarma.

6.
J Agric Food Chem ; 71(46): 17627-17634, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37941360

ABSTRACT

The reaction of ethyl 5-cyano-2-methyl-4-(thiophen-2-yl)-6-thioxo-1,6-dihydropyridine-3-carboxylate (1) with 2-chloroacetamide or its N-aryl derivatives gave ethyl 6-((2-amino-2-oxoethyl)thio)-5-cyano-2-methyl-4-(thiophen-2-yl) nicotinate (2a) or its N-aryl derivatives 2b-f, respectively. Cyclization of 2a-f into their isomers 3a-f was carried out by heating in absolute ethanol in the presence of a catalytic amount of sodium ethoxide. The o-aminoamide 3a was reacted with some aryl aldehydes in refluxing ethanol containing a few drops of conc. HCl to afford the corresponding tetrahydropyrimidinones 4a-d. The cyclocondensation reaction of 3a with some cycloalkanones such as cyclopentanone and cyclohexanone gave the corresponding spiro compounds 5a,b. The crystal structures of compounds 2a and 2d were determined by single-crystal X-ray diffraction techniques. All new compounds were evaluated for their insecticidal activity toward nymphs and adults of Aphis gossypi.


Subject(s)
Insecticides , Insecticides/pharmacology , Pyridines/chemistry , Cyclization , Ethanol
7.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878040

ABSTRACT

Tetrahydroisoquinolines (THIQs) are a significant class within the broad range of natural compounds known as isoquinoline alkaloids. Natural and manmade drugs based on THIQ have a variety of biological effects that protect against different infectious pathogens and neurological diseases. In this study, two new THIQ derivatives were synthesized and characterized using by X-ray crystallographic analysis. The performed Hirshfeld analysis shows the intermolecular interactions and reactive sites of compounds. The 2D fingerprints reveal dominants H···C interactions up to 8.8% in 3a while 43% H···H elemental interactions are observed in compound 3b. In studied compound 3a, the repulsion energies (k-rep) dominate the other energies where the highest amount of 63.8 kJ/mol is obtained whereas 3b has a significant contribution from E-dis to the total energy of the molecule from the energy framework study. Moreover, the density functional theory study reveals better thermodynamic and electronic stabilities. These compounds have reduced HOMO-LUMO gaps (EH-L) ranging from 3.66 to 3.60 eV, indicating their remarkable conductive and electronic properties. The significant reduction in EH-L also guarantees our synthesized compounds' soft nature and reactivity. Our studied compound's NBO charges and MEPs analysis show electron-rich sites and donor-acceptor mechanism. Our synthesized compounds have remarkable polarizability (αo) and hyperpolarizability (ßo) values (446.23 - 1312.73 au), which indicates their optical and nonlinear optical properties. The density of states spectra further illustrates their notable structural-electronic properties and reduced band gaps. Based on structural activity relationship studies, we found that these tetrahydro-isoquinolines derivatives are potent against microsomal prostaglandin E synthase 1(MPGES1), the docking analysis shows that studied compounds have a good binding affinity with MPGES1, and further ADME/T analysis was carried out for both compounds. In addtion to this molecular dynamics, studies were performed to understand the binding stability of both compounds in protien complex system during 100 ns simulation.Communicated by Ramaswamy H. Sarma.

8.
J Biomol Struct Dyn ; : 1-19, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37318002

ABSTRACT

Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma.

9.
J King Saud Univ Sci ; 35(4): 102628, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36908997

ABSTRACT

In the present work, we describe the extraction of a natural product namely 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, and its structure was confirmed by single crystal X-ray diffraction analysis. The conformations of the 5-, 6-, and 7-membered rings in the title compound, C15H24O2, have been probed by a Cremer-Pople puckering analysis. C-H···O hydrogen bonds generate chains in the crystal that stretch along the c-axis direction. The Hirshfeld surface analysis method was used to stabilize the crystal packing of the natural compound. Accompanied by experimental studies, quantum chemical calculations were also performed to compare the structural elucidation and the results of these geometrical parameters exhibited excellent agreement. The compound was also docked with several drug targets of the SARS-CoV-2 virus and found to show the best binding with the main protease enzyme, having a binding energy of -12.31 kcal/mol and interacting with His41 and Cys145 residues. The dynamic stability deciphered the complex to be stable with an average RMSD of 3.8 Å. The compound dynamics with the enzyme showed the compound conformation to be highly stable. The intermolecular binding free energy determined the compound-main protease enzyme to show high interaction energy of < 40 kcal/mol. Together, these studies demonstrate the compound to be a lead structure against SARS-CoV-2.

10.
J Biomol Struct Dyn ; 41(23): 14275-14284, 2023.
Article in English | MEDLINE | ID: mdl-36794735

ABSTRACT

In recent times, the novel coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now become a worldwide pandemic. With over 71 million confirmed cases, even though the effectiveness and side effects of the specific drugs and vaccines approved for this disease are still limited. Scientists and researchers from all across the world are working to find a vaccine and a cure for COVID-19 by using large-scale drug discovery and analysis. Heterocyclic compounds are regarded to be valuable sources for the discovery of new antiviral medications against SARS-CoV-2 because virus occurrences are still on the rise, and infectivity and mortality may also rise shortly. In this regard, we have synthesized a new triazolothiadiazine derivative. The structure was characterized by NMR spectra and confirmed by X-ray diffraction analysis. The structural geometry coordinates of the title compound are well reproduced by DFT calculations. NBO and NPA analyses have been performed to determine the interaction energies between bonding and antibonding orbital, and natural atomic charges of heavy atoms. Molecular docking suggests that the compounds may have good affinity for SAR-CoV-2 main protease, RNA-dependent RNA polymerase and nucleocapsid enzymes, particularly the main protease enzyme (binding energy of -11.9 kcal mol-1). The predicted docked pose of the compound is dynamically stable and reports a major van der Waals contribution (-62.00 kcal mol-1) to overall net energy.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Thiadiazines , Humans , SARS-CoV-2 , Thiadiazines/pharmacology , Molecular Docking Simulation , X-Rays , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Peptide Hydrolases , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
11.
J Mol Struct ; 1247: 131348, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-36406284

ABSTRACT

For first time the new N-picolinoypicolinlamide was obtained as in situ ligand during the reaction of 2,4,6-ris(2-pyridyl)-,3,5-triazine with aqueous solution of CuNO3·3H2O and formed the corresponding complex [Cu(dipicolinoylamide)(NO3)(H2O)]. The crystal structure of the obtained complex was determined by x-ray structure. The complex crystallizes in space group P21/n, a = 10.2782(9) Å, b = 7.5173(6) Å, c = 17.738(2) Å, α = 90.00°, ß = 91.368(1)°, γ = 90.00°, V = 1370.1(2) Å3, Z = 4. The copper center has a distorted octahedral geometry. DFT calculations show good agreement between theoretical and X-ray data. The Molecular docking studies were executed to consider the nature of binding and binding affinity of the synthesized compounds with the receptor of COVID-19 main protease viral protein (PDB ID: 6lu7), the receptor of gram -ve bacteria (Escherichia coli, PDB ID: 1fj4) and the receptor of gram +ve bacteria (Staphylococcus aureus, PDB ID: 3q8u and Proteus PDB ID: 5i39) and with human DNA. Finally, in silico ADMET predictions was also examined.

12.
Bioorg Chem ; 129: 106171, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36166898

ABSTRACT

Uncontrolled inflammation predisposes to pleiotropic effects leading to cancer development thanks to promoting all stages of tumorigenesis. Therefore, cancer-associated inflammation has been delegated as the seventh hallmark of cancer. Thus, raging the war against both inflammation and cancer via the innovation of bioactive agents with dual anti-inflammatory and anticancer activities is a necessity. Herein, a novel series of pyrazole-chalcone analogs of Lonazolac (7a-g and 8a-g) have been synthesized and investigated for their in vitro anticancer activity against four cancer cell lines using the MTT assay method. Among all, hybrid 8g was the most potent against three cancer cell lines, HeLa, HCT-116, and RPMI-822 with IC50 values of 2.41, 2.41, and 3.34 µM, respectively. In contrast, hybrid 8g showed moderate inhibitory activity against MCF-7 with IC50 28.93 µM and with a selectivity profile against MCF-10A (non-cancer cells). Mechanistically, hybrid 8g was the most potent inhibitor against tubulin polymerization (IC50 = 4.77 µM), suggesting tubulin as a molecular target and explaining the observed cytotoxicity of hybrid 8g. This was mirrored by the detected potent pre-G1 apoptosis induction and G2/M cell cycle arrest. Moreover, hybrid8gexhibited selectivity against COX-2 (IC50 = 5.13 µM) more than COX-1 (IC50 = 33.46 µM), indicating that 8g may have lower cardiovascular side effects, but is still not potent as celecoxib (COX-2 IC50 = 0.204 µM, COX-1 = 35.8 µM). Notably, hybrid 8g showed promising inhibitory activity towards 5-LOX (IC50 = 5.88 µM). Finally, the anti-inflammatory activity of hybrid8 g was confirmed by high iNOS and PGE2 inhibitory activities in LPS-stimulated RAW cells with IC50 values of4.93 µM and 10.98 µM, respectively, that accompanied by showingthe most potent inhibition of NO release (70.61 % inhibition rate). Molecular docking studies of hybrid 8g confirmed good correlations with the executed biological results. Furthermore, hybrid 8g had good drug-likeness and suitable physicochemical properties. Taken together, the combined results suggested hybrid8gas a promising orally administered candidate in the journey of repurposing NSAIDs for cancer chemopreventionand treatment.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Humans , Molecular Docking Simulation , Tubulin Modulators/pharmacology , Chalcone/pharmacology , Chalcones/pharmacology , Tubulin/metabolism , Cyclooxygenase 2/metabolism , Structure-Activity Relationship , Pyrazoles/pharmacology , Pyrazoles/chemistry , Anti-Inflammatory Agents/pharmacology , Inflammation , Antineoplastic Agents/chemistry , Molecular Structure , Drug Screening Assays, Antitumor , Cell Proliferation , Cell Line, Tumor
13.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 9): 880-884, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36072522

ABSTRACT

In the title compound, C24H23FN4O4S·0.25H2O, the di-hydro-pyrimidine ring is distinctly non-planar, with the flap C atom deviating by 0.297 (2) Šfrom the least-squares plane. In the crystal, zigzag chains are formed by N-H⋯N hydrogen bonds parallel to [010] and are connected into layers parallel to (100) by O-H⋯O, O-H⋯F, C-H⋯O, C-H⋯F and C-H⋯N hydrogen bonds. Additional C-H⋯O hydrogen bonds connect the layers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (42.6%), O⋯H/H⋯O (16.8%) and C⋯H/H⋯C (15.5%) contacts.

14.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 8): 846-850, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974819

ABSTRACT

In the title mol-ecule, C23H20Cl2N4O3S, the thia-zole ring is planar while the pyrimidine unit fused to it adopts a screw-boat conformation. In the crystal, thick sheets parallel to the bc plane are formed by N-H⋯N, C-H⋯N and C-H⋯O hydrogen bonds together with π-π inter-actions between the formamido carbonyl groups and the thia-zole rings. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (30.9%), Cl⋯H/H⋯Cl (20.7%), C⋯H/H⋯C (16.8%) and O⋯H/H⋯O (11.4%) inter-actions.

15.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 8): 860-863, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974829

ABSTRACT

The title mol-ecule, C21H26N2O3, adopts a V-shaped conformation and is chiral at the C atom with methyl group attached at the common cut of the edges of the V-conformation and crystallizes as a racemate. It also contains an intra-molecular O-H⋯N hydrogen bond. In the crystal, N-H⋯O hydrogen bonds form chains of mol-ecules extending along the c-axis direction, together with normal van der Waals contacts. The roles of the various inter-molecular inter-actions were clarified by Hirshfeld surface analysis, which reveals that the most important contributions to the crystal packing are from H⋯H (62.6%), C⋯H/H⋯C (15.8%) and O⋯H/H⋯O (15.3%) contacts.

16.
Appl Biochem Biotechnol ; 194(12): 5781-5807, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35819690

ABSTRACT

Although nonsteroidal anti-inflammatory drugs (NSAIDs) are medicines that are widely used to relieve pain, reduce inflammation, and bring down high temperature, literature confirmed that they still have harmful side effects. Most of their side effects are in the digestive system due to the carboxylic group. As naproxen is one of the NSAIDs, in this work, we try to mask the carboxylic group in naproxen with a relatively safe functional group. So, herein, we report the synthesis of new naproxen-based hydrazones derivatives, namely, (E)-N'-1-(4-chlorophenyl)ethylidene)-2-(6-methoxynaphthalen-2-yl)propane hydrazide (4a) and (E)-N'-(4-hydroxybenzylidene)-2-(6-methoxynaphthalen-2-yl)propane hydrazide ethanol solvate (4b). The compounds were confirmed by X-ray diffraction studies. Hirshfeld surface analyses and energy frameworks of 4a and 4b have been carried out and blind molecular docking studies of them to the COX-2 enzyme were undertaken to obtain binding affinities for judging whether the compounds could act as anti-inflammatory agents. The compounds interact with the key residues: Arg120, Val349, Leu352, Tyr355, Val523, Ala527, Ser530, and Leu531 of the active enzyme pocket. Molecular dynamics studies predicted that the complexes of 4a and 4b with COX-2 are structurally stable and no major conformational changes were observed. Confirmation of the docking and simulation data was achieved by a binding free energies analysis that indicated the dominance of van der Waals energy. The compounds are drug-like molecules as they obey all prominent drug-like rules and have acceptable pharmacokinetic profiles. To investigate the relationship between their intrinsic electronic properties and their possible similarities to actual drugs, the gas-phase DFT optimizations and NBO analyses were also performed in this study.


Subject(s)
Cyclooxygenase 2 Inhibitors , Naproxen , Naproxen/chemistry , Naproxen/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Molecular Docking Simulation , Cyclooxygenase 2/metabolism , Hydrazines , Propane , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Structure-Activity Relationship
17.
J Agric Food Chem ; 70(31): 9637-9644, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35901495

ABSTRACT

Three new series of isoquinolines, that is, 7-acetyl-3-acetonylsulfanyl-8-aryl-1,6-dimethyl-6-hydroxy-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles (3a-c); 3-acetonylsulfanyl-8-aryl-1,6-dimethyl-7,8-dihydroisoquinoline-4-carbonitriles (4a-c); and 7-acetyl-8-aryl-1,6-dimethyl-3-ethylsulfanyl-7,8-dihydroisoquinoline-4-carbo-nitriles (6a,b) were carefully synthesized. Also, pyrazoloisoquinoline 7 was used as a precursor for synthesis of 7-ethylsulfanyl-4-phenyl-1-thiocarbamoyl-3,5,9a-trimethyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinoline-8-carbonitrile (8); 7-benzyl-sulfanyl-4-phenyl-1-thiocarbamoyl-3,5,9a-trimethyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinoline-8-carbonitrile (9); and 7-ethylsulfanyl-1-(4-oxo-4,5-dihydrothiazol-2-yl)-4-phenyl-3,5,9a-trimethyl-3a,4,9,9a-tetrahydro-1H-pyrazolo[3,4-g]isoquinoline-8-carbonitrile (10). Moreover, the crystal structures of two representative compounds were determined. Eleven new compounds 3a, 4a, 3b, 4b, 3c, 4c, 6a, 6b, 8, 9, and 10 were screneed for their toxicological activity against nymphs and adults of Aphis gossypii by using acetamprid, as a reference. After 24 h of treatment, the bioefficacy results indicate that all tested isoquinolines exhibit toxicological activity that varied from very high to low against nymphs and adults of Aphis gossypii, some compounds showing activity near to that of acetampirid and only one compound which possesses higher activity against nymphs and adults of Aphis gossypii than that of acetampirid itself.


Subject(s)
Aphids , Insecticides , Animals , Insecticides/toxicity , Isoquinolines , Nitriles/chemistry , Pyridines
18.
J Mol Struct ; 1265: 133391, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35663190

ABSTRACT

In the fall of 2019, a new type of coronavirus took place in Wuhan city, China, and rapidly spread across the world and urges the scientific community to develop antiviral therapeutic agents. In our effort we have synthesized a new hydrazide derivative, (E)-N'-(1-(4-bromophenyl)ethylidene)-2-(6-methoxynaphthalen-2-yl)propanehydrazide for this purpose because of its potential inhibitory proprieties. The asymmetric unit of the title molecule consists of two independent molecules differing noticeably in conformation. In the crystal, the independent molecules are linked by N-H···O and C-H···O hydrogen bonds and C-H···π(ring) interactions into helical chains extending along the b-axis direction. The chains are further joined by additional C-H···π(ring) interactions into the full 3-D structure. To obtain a structure-activity relationship, the DFT-NBO analysis is performed to study the intrinsic electronic properties of the title compound. Molecular modeling studies were also conducted to examine the binding affinity of the compound for the SARS-CoV-2 main protease enzyme and to determine intermolecular binding interactions. The compound revealed a stable binding mode at the enzyme active pocket with a binding energy value of -8.1 kcal/mol. Further, stable dynamics were revealed for the enzyme-compound complex and reported highly favorable binding energies. The net MMGBSA binding energy of the complex is -37.41 kcal/mol while the net MMPBSA binding energy is -40.5 kcal/mol. Overall, the compound disclosed the strongest bond of ing the main protease enzyme and might be a good lead for further structural optimization.

19.
J Biochem Mol Toxicol ; 36(8): e23082, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35435307

ABSTRACT

This study reports the synthesis of two new hydrazide derivatives, namely, (E)-N'-(4- bromobenzylidene)-2-(4-isobutylphenyl)propanehydrazide (4a) and (E)-N'-benzylidene-2-(4-isobutylphenyl)propanehydrazide (4b), respectively. The compounds were synthesized by the reaction of benzaldehyde with Ibuprofen acid hydrazide. Their structures were confirmed by X-ray crystallography. To try to do a more detailed investigation, computational studies including Hirshfeld surface analyses, energy frameworks, density functional theory (DFT) optimizations, frontier orbital analyses, molecular electrostatic potential analyses, and natural bond orbital analyses of the studied compounds are performed. Moreover, molecular docking and dynamics simulations of complexes of the compounds with the cyclooxygenase-2 (COX-2) enzyme were performed to determine the anti-inflammatory potential of the compounds. These analyses predicted the compounds to show maximum chemical interactions and be dynamically stable during simulation time. Furthermore, estimation of binding free energies confirmed the high binding affinity of the compounds for the COX-2 enzyme.


Subject(s)
Hydrazines , Crystallography, X-Ray , Cyclooxygenase 2/metabolism , Hydrazines/pharmacology , Molecular Docking Simulation , Molecular Structure , Static Electricity
20.
ACS Omega ; 7(10): 8767-8776, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35309417

ABSTRACT

Regioselective cyclocondensation of 2,4-diacetyl-5-hydroxy-5-methyl-3-(3-nitrophenyl/4-nitrophenyl)cyclohexanones 1a,b with cyanothioacetamide afforded the corresponding 7-acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3- and -4-nitrophenyl)-5,6,7,8-tetrahydrosoquinoline-3(2H)-thiones 2a,b. Reaction of compounds 2a,b with ethyl iodide, 2-chloroacetamide (4a), or its N-aryl derivatives 4b-e in the presence of sodium acetate trihydrate gave 3-ethylthio-5,6,7,8-tetrahydroisoquinoline 3 and (5,6,7,8-tetrahydroisoquinolin-3-ylthio)acetamides 5a-i, respectively. Cyclization of compounds 5b-d,f,g into their isomeric 1-amino-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamides 6b-d,f,g was achieved by heating in ethanol containing a catalytic amount of sodium carbonate. Structures of all synthesized compounds were characterized on the basis of their elemental analyses and spectroscopic data. The crystal structure of 5,6,7,8-tetrahydroisoquinoline 5d was determined by X-ray diffraction analysis. In addition, the biological evaluation of some synthesized compounds as anticancer agents was performed, and only six compounds showed moderate to strong activity against PACA2 (pancreatic cancer cell line) and A549 (lung carcinoma cell line). Moreover, the antioxidant properties of most synthesized compounds were examined. The results revealed high antioxidant activity for the most tested compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...