Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0300645, 2024.
Article in English | MEDLINE | ID: mdl-38753855

ABSTRACT

For a car that is propelled by an armature-controlled DC motor This study proposes an adjustable linear positioning control. In this paper, to optimize the parameters of the car's position controller the sine cosine optimization algorithm (SCA) is utilized, with support from the Balloon effect (BE), The BE is incorporated to enhance the responsiveness of the traditional sine cosine optimization algorithm when faced with external disturbances and variations in system parameters. In the proposed approach, the determined value of the open loop transfer function of the motor and the updated values of the controller gains serve as the basis for the modified sine cosine algorithm's objective function (OF). Under the influence of changes in motor parameters and step load disturbances, the system using the suggested controller is evaluated. Results from simulations and experiments show that the proposed adaptive controller, which implements the modified sine cosine algorithm, enhances the system's overall performance in the presence of load disturbances and parameter uncertainties.


Subject(s)
Algorithms , Humans , Computer Simulation , Equipment Design
2.
PLoS One ; 18(12): e0295941, 2023.
Article in English | MEDLINE | ID: mdl-38134013

ABSTRACT

This work analyzes the stability and performance of an offshore solar-concentrated ocean thermal energy conversion system (SC-OTEC) tied to an onshore AC grid. The OTEC is a system where electricity is generated using small temperature differences between the warm surface and deep cold ocean water. Existing control methods for SC-OTEC systems lack coordination, hindering dynamic stability and effective damping for the synchronous generator (SG). These methods struggle to quickly adapt to sudden disturbances and lack the capability to adequately reject or compensate for such disturbances due to complex control constraints and computational demands. To this regard, a control strategy combining sliding mode control (SMC) and a power system stabilizer (PSS) to improve the SC-OTEC dynamic stability and damping features for the SG. Moreover, an auxiliary secondary automatic voltage regulator is assembled with a non-linear exciter system to provide damping features. The proposed PID-PSS and secondary AVR controller gains are adaptively tuned using a modified whale optimization algorithm with the balloon effect modulation. The studied SC-OTEC is tested through MATLAB/Simulink under a severe 3ϕ short-circuit fault, solar radiation variations, and a change in surface seawater temperature as well as changes in local loads. The final findings approved that the proposed control strategy preserves a strong performance and can mimic effectively the proposed SC-OTEC damping compared to the conventional system.


Subject(s)
Aircraft , Algorithms , Animals , Cetacea , Computer Systems , Electricity , Excipients , Water
3.
PLoS One ; 18(10): e0293246, 2023.
Article in English | MEDLINE | ID: mdl-37862365

ABSTRACT

Due to the unpredictability of the majority of green energy sources (GESs), particularly in microgrids (µGs), frequency deviations are unavoidable. These factors include solar irradiance, wind disturbances, and parametric uncertainty, all of which have a substantial impact on the system's frequency. An adaptive load frequency control (LFC) method for power systems is suggested in this paper to mitigate the aforementioned issues. For engineering challenges, soft computing methods like the bat algorithm (BA), where it proves its effectiveness in different applications, consistently produce positive outcomes, so it is used to address the LFC issue. For online gain tuning, an integral controller using an artificial BA is utilized, and this control method is supported by a modification known as the balloon effect (BE) identifier. Stability and robustness of analysis of the suggested BA+BE scheme is investigated. The system with the proposed adaptive frequency controller is evaluated in the case of step/random load demand. In addition, high penetrations of photovoltaic (PV) sources are considered. The standard integral controller and Jaya+BE, two more optimization techniques, have been compared with the suggested BA+BE strategy. According to the results of the MATLAB simulation, the suggested technique (BA+BE) has a significant advantage over other techniques in terms of maintaining frequency stability in the presence of step/random disturbances and PV source. The suggested method successfully keeps the frequency steady over I and Jaya+BE by 61.5% and 31.25%, respectively. In order to validate the MATLAB simulation results, real-time simulation tests are given utilizing a PC and a QUARC pid_e data acquisition card.


Subject(s)
Algorithms , Models, Theoretical , Computer Simulation , Electric Power Supplies , Energy-Generating Resources
4.
PLoS One ; 18(9): e0291463, 2023.
Article in English | MEDLINE | ID: mdl-37695790

ABSTRACT

The integration of renewable sources (RSs) and the widespread deployment of electric vehicles (EVs) has transitioned from a luxury to a necessity in modern power systems. This results from the sharp increase in electric power demand and public awareness of switching to green energy. However, in addition to load fluctuations and changes in system parameters, these RSs and EVs negatively impact the load frequency (LF). This work presents a LF control for a modern multi-area power system incorporating photovoltaic (PV) and EV chargers. The proposed controller primarily utilizes EV chargers within modern power systems. This approach offers the advantage of using the already present components instead of introducing new ones. The proposed controller comprises the ecological optimization approach (ECO) and the integral controller (I). Both of these components are designed for autonomous vehicle-to-grid (V2G) devices. The proposed control technique is applied to a three-area power system, where the V2G scheme is located in Area-1. Variations in the load, PV power generated, and system parameters are considered to evaluate the effectiveness of the proposed (I+ECO+V2G) controller for controlling the LF. To assess the performance of the proposed I+ECO+V2G system, a comparative analysis is conducted to compare its performance with both the I+ECO system and the standard I-controller. The simulation findings demonstrate that implementing the I+ECO and the proposed I+ECO+V2G strategies results in enhanced system stability and decreased LF fluctuations compared to the conventional I-control approach. Furthermore, while comparing the I+ECO control technique to the suggested control strategy I+ECO+V2G, it was seen that the latter reaches steady state values more quickly. The results validate the robustness and effectiveness of the proposed controller in mitigating the impacts of load disturbances, uncertainties, and nonlinearities within the system. These simulations were performed using MATLAB/SIMULINK. To validate the outcomes of the simulation results, an experimental setup consisting of a real-time dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card was used. The experimental findings have substantiated the accuracy of the simulation findings about the superiority of the I+ECO+V2G methodology compared to both the I+ECO and I-control methodologies concerning system performance and LF control.

5.
PLoS One ; 18(4): e0283561, 2023.
Article in English | MEDLINE | ID: mdl-37043463

ABSTRACT

The operation of the system's frequency can be strongly impacted by load change, solar irradiation, wind disturbance, and system parametric uncertainty. In this paper, the application of an adaptive controller based on a hybrid Jaya-Balloon optimizer (JBO) for frequency oscillation mitigation in a single area smart µG system is studied. The proposed adaptive control approach is applied to control the flexible loads such as HPs and EVs by using the JBO which efficiently controls the system frequency. The suggested technique uses the power balance equation to provide a dynamic output feedback controller. The main target is to regulate the frequency and power of an islanded single area µG powered by a PV and a diesel generator with integrations of smart bidirectional loads (HPs and EVs) that are controlled by the proposed adaptive controller in presence of electrical random loads. Moreover, the JBO is designed to minimize the effect of the system load disturbance and parameter variations. For a better assessment, the proposed controller using JBO technique is compared with two other methods which are the coefficient diagram method (CDM) and adaptive one using classical the Jaya technique. In the obtained results, the frequency deviation is found as 0.0015 Hz, which is fully acceptable and in the range of the IEEE standards. The MATLAB simulation results reveal that the suggested technique has a substantial advantage over other techniques in terms of frequency stability in the face of concurrent disturbances and parameter uncertainties. The real-time simulation tests are presented using a dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card and confirmed the MATLAB simulation results.


Subject(s)
Algorithms , Solar Energy , Computer Simulation , Feedback , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...