Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Prep Biochem Biotechnol ; 51(4): 350-360, 2021.
Article in English | MEDLINE | ID: mdl-32940138

ABSTRACT

A thermostable bacterial lipase from Geobacillus zalihae was expressed in a novel yeast Pichia sp. strain SO. The preliminary expression was too low and discourages industrial production. This study sought to investigate the optimum conditions for T1 lipase production in Pichia sp. strain SO. Seven medium conditions were investigated and optimized using Response Surface Methodology (RSM). Five responding conditions namely; temperature, inoculum size, incubation time, culture volume and agitation speed observed through Plackett-Burman Design (PBD) method had a significant effect on T1 lipase production. The medium conditions were optimized using Box-Behnken Design (BBD). Investigations reveal that the optimum conditions for T1 lipase production and Biomass concentration (OD600) were; Temperature 31.76 °C, incubation time 39.33 h, culture volume 132.19 mL, inoculum size 3.64%, and agitation speed of 288.2 rpm with a 95% PI low as; 12.41 U/mL and 95% PI high of 13.65 U/mL with an OD600 of; 95% PI low as; 19.62 and 95% PI high as; 22.62 as generated by the software was also validated. These predicted parameters were investigated experimentally and the experimental result for lipase activity observed was 13.72 U/mL with an OD600 of 24.5. At these optimum conditions, there was a 3-fold increase on T1 lipase activity. This study is the first to develop a statistical model for T1 lipase production and biomass concentration in Pichia sp. Strain SO. The optimized production of T1 lipase presents a choice for its industrial application.


Subject(s)
Bacterial Proteins/biosynthesis , Geobacillus/enzymology , Lipase/biosynthesis , Models, Statistical , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/biosynthesis , Temperature , Biomass , Cell Culture Techniques/methods , Culture Media/metabolism , Methanol/metabolism
2.
Int J Microbiol ; 2019: 4208986, 2019.
Article in English | MEDLINE | ID: mdl-31093290

ABSTRACT

Bovine gelatin is a biopolymer which has good potential to be used in encapsulating matrices for probiotic candidate Bifidobacterium pseudocatenulatum strain G4 (G4) because of its amphoteric nature characteristic. Beads were prepared by the extrusion method using genipin and sodium alginate as a cross-linking agent. The optimisation of bovine gelatin-genipin-sodium alginate combinations was carried out using face central composition design (FCCD) to investigate G4 beads' strength, before and after exposed to simulated gastric (SGF), intestinal fluids (SIF), and encapsulation yield. A result of ANOVA and the polynomial regression model revealed the combinations of all three factors have a significant effect (p < 0.05) on the bead strength. Meanwhile, for G4 encapsulation yield, only genipin showed less significant effect on the response. However, the use of this matrix remained due to the intermolecular cross-linking ability with bovine gelatin. Optimum compositions of bovine gelatin-genipin-sodium alginate were obtained at 11.21% (w/v), 1.96 mM, and 2.60% (w/v), respectively. A model was validated for accurate prediction of the response and showed no significant difference (p > 0.05) with experimental values.

3.
J Ind Microbiol Biotechnol ; 43(10): 1387-95, 2016 10.
Article in English | MEDLINE | ID: mdl-27541157

ABSTRACT

In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.


Subject(s)
Aspergillus oryzae/metabolism , Soy Foods , gamma-Aminobutyric Acid/biosynthesis , Aspergillus oryzae/classification , Fermentation , Glutamic Acid/metabolism , Phylogeny
4.
Molecules ; 20(7): 12946-58, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26193248

ABSTRACT

The development of reliable and ecofriendly approaches for the production of nanomaterials is a significant aspect of nanotechnology nowadays. One of the most important methods, which shows enormous potential, is based on the green synthesis of nanoparticles using plant extract. In this paper, we aimed to develop a rapid, environmentally friendly process for the synthesis silver nanoparticles using aqueous extract of sumac. The bioactive compounds of sumac extract seem to play a role in the synthesis and capping of silver nanoparticles. Structural, morphological and optical properties of the nanoparticles were characterized using FTIR, XRD, FESEM and UV-Vis spectroscopy. The formation of Ag-NP was immediate within 10 min and confirmed with an absorbance band centered at 438 nm. The mean particle size for the green synthesized silver nanoparticles is 19.81 ± 3.67 nm and is fairly stable with a zeta potential value of -32.9 mV. The bio-formed Ag-NPs were effective against E. coli with a maximum inhibition zone of 14.3 ± 0.32 mm.


Subject(s)
Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Rhus/chemistry , Silver/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Drug Delivery Systems , Escherichia coli/drug effects , Fruit/chemistry , Green Chemistry Technology , Hep G2 Cells , Humans , Metal Nanoparticles/administration & dosage , Microbial Sensitivity Tests , Particle Size , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/administration & dosage , Silver/pharmacology
5.
Biomed Res Int ; 2014: 787989, 2014.
Article in English | MEDLINE | ID: mdl-24527457

ABSTRACT

This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and ß -galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 2(3) full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and ß -galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract.


Subject(s)
Bifidobacterium/growth & development , Bifidobacterium/metabolism , Biotechnology/methods , Culture Media/chemistry , Research Design , Animals , Biomass , Culture Media/metabolism , Milk , Models, Statistical , Reproducibility of Results , Yeasts
6.
Electron. j. biotechnol ; 8(3)Dec. 2005. graf
Article in English | LILACS | ID: lil-448795

ABSTRACT

High performance enzymatic synthesis of oleyl oleate, a liquid wax ester was carried out by lipase-catalysed esterification of oleic acid and oleyl alcohol. Various reaction parameters were optimised to obtain high yield of oleyl oleate. The optimum condition to produce oleyl oleate was reaction time; 5 min, organic solvents of log P is greater than or equal to 3.5, temperature; 40-50 ºC, amount of enzyme; 0.2-0.4 g and molar ratio of oleyl alcohol to oleic acid; 2:1. The operational stability of enzyme was maintained at >90 percent yield up to 9 cycles. Analysis of the yield of the product showed that at optimum conditions, >95 percent liquid wax esters were produced.


Subject(s)
Oleic Acids/biosynthesis , Candida/enzymology , Lipase/metabolism , Oleic Acids/chemistry , Esterification , Enzymes, Immobilized/metabolism , Esters/metabolism , Lipase/chemistry , Solvents , Substrate Specificity , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL