Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Am J Physiol Renal Physiol ; 326(4): F584-F599, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38299214

ABSTRACT

Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.


Subject(s)
Cardiomyopathies , Renal Insufficiency, Chronic , Animals , Mice , Fibroblast Growth Factor-23 , Disease Models, Animal , Renal Insufficiency, Chronic/metabolism , Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factors/metabolism , Biomarkers , Phosphates , Cardiomyopathies/drug therapy , Cardiomyopathies/complications
2.
Nature ; 618(7966): 862-870, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286607

ABSTRACT

α/ßKlotho coreceptors simultaneously engage fibroblast growth factor (FGF) hormones (FGF19, FGF21 and FGF23)1,2 and their cognate cell-surface FGF receptors (FGFR1-4) thereby stabilizing the endocrine FGF-FGFR complex3-6. However, these hormones still require heparan sulfate (HS) proteoglycan as an additional coreceptor to induce FGFR dimerization/activation and hence elicit their essential metabolic activities6. To reveal the molecular mechanism underpinning the coreceptor role of HS, we solved cryo-electron microscopy structures of three distinct 1:2:1:1 FGF23-FGFR-αKlotho-HS quaternary complexes featuring the 'c' splice isoforms of FGFR1 (FGFR1c), FGFR3 (FGFR3c) or FGFR4 as the receptor component. These structures, supported by cell-based receptor complementation and heterodimerization experiments, reveal that a single HS chain enables FGF23 and its primary FGFR within a 1:1:1 FGF23-FGFR-αKlotho ternary complex to jointly recruit a lone secondary FGFR molecule leading to asymmetric receptor dimerization and activation. However, αKlotho does not directly participate in recruiting the secondary receptor/dimerization. We also show that the asymmetric mode of receptor dimerization is applicable to paracrine FGFs that signal solely in an HS-dependent fashion. Our structural and biochemical data overturn the current symmetric FGFR dimerization paradigm and provide blueprints for rational discovery of modulators of FGF signalling2 as therapeutics for human metabolic diseases and cancer.


Subject(s)
Fibroblast Growth Factor-23 , Heparan Sulfate Proteoglycans , Hormones , Receptors, Fibroblast Growth Factor , Signal Transduction , Humans , Cryoelectron Microscopy , Fibroblast Growth Factor-23/chemistry , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factor-23/ultrastructure , Heparan Sulfate Proteoglycans/chemistry , Heparan Sulfate Proteoglycans/metabolism , Hormones/chemistry , Hormones/metabolism , Klotho Proteins/chemistry , Klotho Proteins/metabolism , Klotho Proteins/ultrastructure , Protein Multimerization , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/ultrastructure , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure
3.
Cell Metab ; 35(6): 1022-1037.e6, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37167965

ABSTRACT

Type 2 diabetes (T2D) is a major health and economic burden worldwide. Despite the availability of multiple drugs for short-term management, sustained remission of T2D is currently not achievable pharmacologically. Intracerebroventricular administration of fibroblast growth factor 1 (icvFGF1) induces sustained remission in T2D rodents, propelling intense research efforts to understand its mechanism of action. Whether other FGFs possess similar therapeutic benefits is currently unknown. Here, we show that icvFGF4 also elicits a sustained antidiabetic effect in both male db/db mice and diet-induced obese mice by activating FGF receptor 1 (FGFR1) expressed in glucose-sensing neurons within the mediobasal hypothalamus. Specifically, FGF4 excites glucose-excited (GE) neurons while inhibiting glucose-inhibited (GI) neurons. Moreover, icvFGF4 restores the percentage of GI neurons in db/db mice. Importantly, intranasal delivery of FGF4 alleviates hyperglycemia in db/db mice, paving the way for non-invasive therapy. We conclude that icvFGF4 holds significant therapeutic potential for achieving sustained remission of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Mice , Animals , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Fibroblast Growth Factor 4/therapeutic use , Rodentia/metabolism , Glucose/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factors/therapeutic use , Fibroblast Growth Factors/metabolism
4.
Proc Natl Acad Sci U S A ; 120(8): e2213090120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36791110

ABSTRACT

Many types of human cancers are being treated with small molecule ATP-competitive inhibitors targeting the kinase domain of receptor tyrosine kinases. Despite initial successful remission, long-term treatment almost inevitably leads to the emergence of drug resistance mutations at the gatekeeper residue hindering the access of the inhibitor to a hydrophobic pocket at the back of the ATP-binding cleft. In addition to reducing drug efficacy, gatekeeper mutations elevate the intrinsic activity of the tyrosine kinase domain leading to more aggressive types of cancer. However, the mechanism of gain-of-function by gatekeeper mutations is poorly understood. Here, we characterized fibroblast growth factor receptor (FGFR) tyrosine kinases harboring two distinct gatekeeper mutations using kinase activity assays, NMR spectroscopy, bioinformatic analyses, and MD simulations. Our data show that gatekeeper mutations destabilize the autoinhibitory conformation of the DFG motif locally and of the kinase globally, suggesting they impart gain-of-function by facilitating the kinase's ability to populate the active state.


Subject(s)
Neoplasms , Receptor Protein-Tyrosine Kinases , Humans , Receptors, Fibroblast Growth Factor/genetics , Neoplasms/drug therapy , Mutation , Adenosine Triphosphate/therapeutic use , Tyrosine , Protein Kinase Inhibitors/chemistry
5.
J Biol Chem ; 298(3): 101680, 2022 03.
Article in English | MEDLINE | ID: mdl-35124007

ABSTRACT

Activation of T cells upon engagement of the T cell antigen receptor rapidly leads to a number of phosphorylation and plasma membrane recruitment events. For example, translocation of phospholipase-Cγ1 (PLC-γ1) to the plasma membrane and its association with the transmembrane adapter protein LAT and two other adapter proteins, Gads and SLP-76, are critical events in the early T cell activation process. We have previously characterized the formation of a tetrameric LAT-Gads-SLP-76-PLC-γ1 complex by reconstitution in vitro and have also characterized the thermodynamics of tetramer formation. In the current study, we define how PLC-γ1 recruitment to liposomes, which serve as a plasma membrane surrogate, and PLC-γ1 activation are regulated both independently and additively by recruitment of PLC-γ1 to phosphorylated LAT, by formation of the LAT-Gads-SLP-76-PLC-γ1 tetramer, and by tyrosine phosphorylation of PLC-γ1. The recently solved structure of PLC-γ1 indicates that, in the resting state, several PLC-γ1 domains inhibit its enzymatic activity and contact with the plasma membrane. We propose the multiple cooperative steps that we observed likely lead to conformational alterations in the regulatory domains of PLC-γ1, enabling contact with its membrane substrate, disinhibition of PLC-γ1 enzymatic activity, and production of the phosphoinositide cleavage products necessary for T cell activation.


Subject(s)
Phospholipase C gamma , Signal Transduction , T-Lymphocytes , Enzyme Activation , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/enzymology , T-Lymphocytes/metabolism
6.
Nat Commun ; 12(1): 7256, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907199

ABSTRACT

Several members of the FGF family have been identified as potential regulators of glucose homeostasis. We previously reported that a low threshold of FGF-induced FGF receptor 1c (FGFR1c) dimerization and activity is sufficient to evoke a glucose lowering activity. We therefore reasoned that ligand identity may not matter, and that besides paracrine FGF1 and endocrine FGF21, other cognate paracrine FGFs of FGFR1c might possess such activity. Indeed, via a side-by-side testing of multiple cognate FGFs of FGFR1c in diabetic mice we identified the paracrine FGF4 as a potent anti-hyperglycemic FGF. Importantly, we found that like FGF1, the paracrine FGF4 is also more efficacious than endocrine FGF21 in lowering blood glucose. We show that paracrine FGF4 and FGF1 exert their superior glycemic control by targeting skeletal muscle, which expresses copious FGFR1c but lacks ß-klotho (KLB), an obligatory FGF21 co-receptor. Mechanistically, both FGF4 and FGF1 upregulate GLUT4 cell surface abundance in skeletal muscle in an AMPKα-dependent but insulin-independent manner. Chronic treatment with rFGF4 improves insulin resistance and suppresses adipose macrophage infiltration and inflammation. Notably, unlike FGF1 (a pan-FGFR ligand), FGF4, which has more restricted FGFR1c binding specificity, has no apparent effect on food intake. The potent anti-hyperglycemic and anti-inflammatory properties of FGF4 testify to its promising potential for use in the treatment of T2D and related metabolic disorders.


Subject(s)
Fibroblast Growth Factor 4/pharmacology , Hypoglycemic Agents/pharmacology , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Fibroblast Growth Factor 4/administration & dosage , Fibroblast Growth Factor 4/metabolism , Fibroblast Growth Factors/administration & dosage , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/metabolism , Inflammation , Insulin Resistance , Ligands , Macrophages/drug effects , Macrophages/metabolism , Mice , Muscle, Skeletal/metabolism , Obesity/drug therapy , Obesity/metabolism , Paracrine Communication , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction/drug effects
7.
Hepatology ; 73(6): 2206-2222, 2021 06.
Article in English | MEDLINE | ID: mdl-32965675

ABSTRACT

BACKGROUND AND AIMS: Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin-binding sites (FGF1△HBS ) against NAFLD. APPROACH AND RESULTS: FGF1△HBS administration was effective in 9-month-old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45-related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD-like oxidative damage and lipid accumulation could be reversed by FGF1△HBS . In palmitate-treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver-specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high-fat/high-sucrose diet-induced hepatic steatosis. Moreover, FGF1△HBS improved high-fat/high-cholesterol diet-induced steatohepatitis and fibrosis in apolipoprotein E knockout mice. CONCLUSIONS: These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fibroblast Growth Factor 1/pharmacology , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Receptor, Fibroblast Growth Factor, Type 4/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Diabetes Mellitus, Experimental , Diet, High-Fat , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Liver , Male , Mice , Mice, Knockout , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress , Palmitates/pharmacology , Receptor, Fibroblast Growth Factor, Type 4/genetics
8.
Haematologica ; 106(2): 391-403, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32193252

ABSTRACT

Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLRs), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte-secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wild-type mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.


Subject(s)
Hepcidins , Iron , Animals , C-Peptide , Erythropoiesis , Fibroblast Growth Factor-23 , Hepcidins/genetics , Inflammation/drug therapy , Mice
9.
J Exp Clin Cancer Res ; 39(1): 276, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33287862

ABSTRACT

BACKGROUND: Platinum-based anticancer drugs have been at the frontline of cancer therapy for the last 40 years, and are used in more than half of all treatments for different cancer types. However, they are not universally effective, and patients often suffer severe side effects because of their lack of cellular selectivity. There is therefore a compelling need to investigate the anticancer activity of alternative metal complexes. Here we describe the potential anticancer activity of rhenium-based complexes with preclinical efficacy in different types of solid malignancies. METHODS: Kinase profile assay of rhenium complexes. Toxicology studies using zebrafish. Analysis of the growth of pancreatic cancer cell line-derived xenografts generated in zebrafish and in mice upon exposure to rhenium compounds. RESULTS: We describe rhenium complexes which block cancer proliferation in vitro by inhibiting the signalling cascade induced by FGFR and Src. Initially, we tested the toxicity of rhenium complexes in vivo using a zebrafish model and identified one compound that displays anticancer activity with low toxicity even in the high micromolar range. Notably, the rhenium complex has anticancer activity in very aggressive cancers such as pancreatic ductal adenocarcinoma and neuroblastoma. We demonstrate the potential efficacy of this complex via a significant reduction in cancer growth in mouse xenografts. CONCLUSIONS: Our findings provide a basis for the development of rhenium-based chemotherapy agents with enhanced selectivity and limited side effects compared to standard platinum-based drugs.


Subject(s)
Coordination Complexes/pharmacology , Methane/analogs & derivatives , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Rhenium/pharmacology , src-Family Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Coordination Complexes/chemistry , Humans , Methane/chemistry , Methane/metabolism , Methane/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Reactive Oxygen Species , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Zebrafish , src-Family Kinases/metabolism
10.
Proc Natl Acad Sci U S A ; 117(46): 29025-29034, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33144503

ABSTRACT

As a physiological regulator of bile acid homeostasis, FGF19 is also a potent insulin sensitizer capable of normalizing plasma glucose concentration, improving lipid profile, ameliorating fatty liver disease, and causing weight loss in both diabetic and diet-induced obesity mice. There is therefore a major interest in developing FGF19 as a therapeutic agent for treating type 2 diabetes and cholestatic liver disease. However, the known tumorigenic risk associated with prolonged FGF19 administration is a major hurdle in realizing its clinical potential. Here, we show that nonmitogenic FGF19 variants that retain the full beneficial glucose-lowering and bile acid regulatory activities of WT FGF19 (FGF19WT) can be engineered by diminishing FGF19's ability to induce dimerization of its cognate FGF receptors (FGFR). As proof of principle, we generated three such variants, each with a partial defect in binding affinity to FGFR (FGF19ΔFGFR) and its coreceptors, i.e., ßklotho (FGF19ΔKLB) or heparan sulfate (FGF19ΔHBS). Pharmacological assays in WT and db/db mice confirmed that these variants incur a dramatic loss in mitogenic activity, yet are indistinguishable from FGF19WT in eliciting glycemic control and regulating bile acid synthesis. This approach provides a robust framework for the development of safer and more efficacious FGF19 analogs.


Subject(s)
Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Mitogens/metabolism , Animals , Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2 , Dimerization , Disease Models, Animal , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/pharmacology , Genetic Engineering , Glucose/metabolism , Hep G2 Cells , Homeostasis , Humans , Klotho Proteins , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Obese/genetics , Receptors, Fibroblast Growth Factor/metabolism
11.
Nat Rev Rheumatol ; 16(10): 547-564, 2020 10.
Article in English | MEDLINE | ID: mdl-32807927

ABSTRACT

Regulated fibroblast growth factor (FGF) signalling is a prerequisite for the correct development and homeostasis of articular cartilage, as evidenced by the fact that aberrant FGF signalling contributes to the maldevelopment of joints and to the onset and progression of osteoarthritis. Of the four FGF receptors (FGFRs 1-4), FGFR1 and FGFR3 are strongly implicated in osteoarthritis, and FGFR1 antagonists, as well as agonists of FGFR3, have shown therapeutic efficacy in mouse models of spontaneous and surgically induced osteoarthritis. FGF18, a high affinity ligand for FGFR3, is the only FGF-based drug currently in clinical trials for osteoarthritis. This Review covers the latest advances in our understanding of the molecular mechanisms that regulate FGF signalling during normal joint development and in the pathogenesis of osteoarthritis. Strategies for FGF signalling-based treatment of osteoarthritis and for cartilage repair in animal models and clinical trials are also introduced. An improved understanding of FGF signalling from a structural biology perspective, and of its roles in skeletal development and diseases, could unlock new avenues for discovery of modulators of FGF signalling that can slow or stop the progression of osteoarthritis.


Subject(s)
Cartilage, Articular/metabolism , Fibroblast Growth Factors/metabolism , Osteoarthritis/metabolism , Signal Transduction/physiology , Animals , Cartilage, Articular/pathology , Clinical Trials as Topic , Disease Progression , Homeostasis/physiology , Humans , Mice , Models, Animal , Osteoarthritis/physiopathology , Osteoarthritis/therapy , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/agonists
12.
Nat Commun ; 11(1): 1421, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184391

ABSTRACT

Uncoupling protein-1 (UCP1) plays a central role in energy dissipation in brown adipose tissue (BAT). Using high-throughput library screening of secreted peptides, we identify two fibroblast growth factors (FGF), FGF6 and FGF9, as potent inducers of UCP1 expression in adipocytes and preadipocytes. Surprisingly, this occurs through a mechanism independent of adipogenesis and involves FGF receptor-3 (FGFR3), prostaglandin-E2 and interaction between estrogen receptor-related alpha, flightless-1 (FLII) and leucine-rich-repeat-(in FLII)-interacting-protein-1 as a regulatory complex for UCP1 transcription. Physiologically, FGF6/9 expression in adipose is upregulated by exercise and cold in mice, and FGF9/FGFR3 expression in human neck fat is significantly associated with UCP1 expression. Loss of FGF9 impairs BAT thermogenesis. In vivo administration of FGF9 increases UCP1 expression and thermogenic capacity. Thus, FGF6 and FGF9 are adipokines that can regulate UCP1 through a transcriptional network that is dissociated from brown adipogenesis, and act to modulate systemic energy metabolism.


Subject(s)
Adipocytes, Brown/metabolism , Adipogenesis , Fibroblast Growth Factor 6/metabolism , Fibroblast Growth Factor 9/metabolism , Obesity/metabolism , Uncoupling Protein 1/metabolism , Adipocytes, Brown/cytology , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Animals , Fibroblast Growth Factor 6/genetics , Fibroblast Growth Factor 9/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/physiopathology , Thermogenesis , Uncoupling Protein 1/genetics
13.
Nat Chem Biol ; 16(3): 267-277, 2020 03.
Article in English | MEDLINE | ID: mdl-31959966

ABSTRACT

A long-standing mystery shrouds the mechanism by which catalytically repressed receptor tyrosine kinase domains accomplish transphosphorylation of activation loop (A-loop) tyrosines. Here we show that this reaction proceeds via an asymmetric complex that is thermodynamically disadvantaged because of an electrostatic repulsion between enzyme and substrate kinases. Under physiological conditions, the energetic gain resulting from ligand-induced dimerization of extracellular domains overcomes this opposing clash, stabilizing the A-loop-transphosphorylating dimer. A unique pathogenic fibroblast growth factor receptor gain-of-function mutation promotes formation of the complex responsible for phosphorylation of A-loop tyrosines by eliminating this repulsive force. We show that asymmetric complex formation induces a more phosphorylatable A-loop conformation in the substrate kinase, which in turn promotes the active state of the enzyme kinase. This explains how quantitative differences in the stability of ligand-induced extracellular dimerization promotes formation of the intracellular A-loop-transphosphorylating asymmetric complex to varying extents, thereby modulating intracellular kinase activity and signaling intensity.


Subject(s)
AAA Domain/physiology , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , AAA Domain/genetics , Catalytic Domain , Dimerization , Enzyme Activation , Humans , Ligands , Phosphorylation , Protein Binding , Protein Conformation , Protein-Tyrosine Kinases/physiology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/physiology , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Signal Transduction , Structure-Activity Relationship , Tyrosine/chemistry
14.
EBioMedicine ; 48: 462-477, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31631034

ABSTRACT

BACKGROUND: The development of a clinically useful fibroblast growth factor 21 (FGF21) hormone has been impeded by its inherent instability and weak FGF receptor (FGFR) binding affinity. There is an urgent need for innovative approaches to overcome these limitations. METHODS: We devised a structure-based chimerisation strategy in which we substituted the thermally labile and low receptor affinity core of FGF21 with an HS binding deficient endocrinised core derived from a stable and high receptor affinity paracrine FGF1 (FGF1ΔHBS). The thermal stability, receptor binding ability, heparan sulfate and ßKlotho coreceptor dependency of the chimera were measured using a thermal shift assay, SPR, SEC-MALS and cell-based studies. The half-life, tissue distribution, glucose lowering activity and adipose tissue remodeling were analyzed in normal and diabetic mice and monkeys. FINDINGS: The melting temperature of the engineered chimera (FGF1ΔHBS-FGF21C-tail) increased by ∼22 °C relative to wild-type FGF21 (FGF21WT), and resulted in a ∼5-fold increase in half-life in vivo. The chimera also acquired an ability to bind the FGFR1c isoform - the principal receptor that mediates the metabolic actions of FGF21 - and consequently was dramatically more effective than FGF21WT in correcting hyperglycemia and in ameliorating insulin resistance in db/db mice. Our chimeric FGF21 also exerted a significant beneficial effect on glycemic control in spontaneous diabetic cynomolgus monkeys. INTERPRETATION: Our study describes a structure-based chimerisation approach that effectively mitigates both the intrinsically weak receptor binding affinities and short half-lives of endocrine FGFs, and advance the development of the FGF21 hormone into a potentially useful drug for Type 2 diabetes.


Subject(s)
Fibroblast Growth Factors/metabolism , Metabolic Diseases/metabolism , Paracrine Communication , Adipocytes/metabolism , Animals , Biomarkers , Chromatography, High Pressure Liquid , Disease Models, Animal , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/genetics , Gene Expression , Humans , Insulin/metabolism , Male , Metabolic Diseases/drug therapy , Metabolic Diseases/etiology , Mice , Models, Molecular , Paracrine Communication/drug effects , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Recombinant Proteins , Structure-Activity Relationship
15.
JCI Insight ; 4(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31484825

ABSTRACT

Dysregulated actions of bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) result in several inherited diseases, such as X-linked hypophosphatemia (XLH), and contribute substantially to the mortality in kidney failure. Mechanisms governing FGF23 production are poorly defined. We herein found that ablation of the Gq/11α-like, extralarge Gα subunit (XLαs), a product of GNAS, exhibits FGF23 deficiency and hyperphosphatemia in early postnatal mice (XLKO). FGF23 elevation in response to parathyroid hormone, a stimulator of FGF23 production via cAMP, was intact in XLKO mice, while skeletal levels of protein kinase C isoforms α and δ (PKCα and PKCδ) were diminished. XLαs ablation in osteocyte-like Ocy454 cells suppressed the levels of FGF23 mRNA, inositol 1,4,5-trisphosphate (IP3), and PKCα/PKCδ proteins. PKC activation in vivo via injecting phorbol myristate acetate (PMA) or by constitutively active Gqα-Q209L in osteocytes and osteoblasts promoted FGF23 production. Molecular studies showed that the PKC activation-induced FGF23 elevation was dependent on MAPK signaling. The baseline PKC activity was elevated in bones of Hyp mice, a model of XLH. XLαs ablation significantly, but modestly, reduced serum FGF23 and elevated serum phosphate in Hyp mice. These findings reveal a potentially hitherto-unknown mechanism of FGF23 synthesis involving a G protein-coupled IP3/PKC pathway, which may be targeted to fine-tune FGF23 levels.


Subject(s)
Fibroblast Growth Factors/metabolism , GTP-Binding Proteins/metabolism , Protein Kinase C/metabolism , Animals , Bone and Bones/metabolism , Disease Models, Animal , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/pathology , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Genetic Predisposition to Disease/genetics , Humans , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Osteocytes , Parathyroid Hormone/metabolism , Protein Kinases , RNA, Messenger/metabolism , Recombinant Proteins
16.
Structure ; 27(8): 1308-1315.e3, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31204250

ABSTRACT

An autoinhibitory network of hydrogen bonds located at the kinase hinge (referred to as the "molecular brake") regulates the activity of several receptor tyrosine kinases. The mechanism whereby mutational disengagement of the brake allosterically activates the kinase in human disease is incompletely understood. We used a combination of NMR, bioinformatics, and molecular dynamics simulation to show that mutational disruption of the molecular brake triggers localized conformational perturbations that propagate to the active site. This entails changes in interactions of an isoleucine, one of three hydrophobic residues that lock the phenylalanine of the DFG motif in an inactive conformation. Structural analysis of tyrosine kinases provides evidence that this allosteric control mechanism is shared across the tyrosine kinase family. We also show that highly activating mutations at the brake diminish the enzyme's thermostability, thereby explaining why these mutations cause milder skeletal syndromes compared with less-activating mutations in the activation loop.


Subject(s)
Isoleucine/genetics , Mutation , Protein-Tyrosine Kinases/chemistry , Allosteric Regulation , Catalytic Domain , Humans , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Protein Conformation , Protein-Tyrosine Kinases/genetics
17.
Front Genet ; 10: 102, 2019.
Article in English | MEDLINE | ID: mdl-30809251

ABSTRACT

Mammalian fibroblast growth factor (FGF) signaling is intricately regulated via selective binding interactions between 18 FGF ligands and four FGF receptors (FGFR1-4), three of which (FGFR1-3) are expressed as either epithelial ("b") or mesenchymal ("c") splice isoforms. The FGF7 subfamily, consisting of FGF3, FGF7, FGF10, and FGF22, is unique among FGFs in that its members are secreted exclusively by the mesenchyme, and specifically activate the "b" isoforms of FGFR1 (FGFR1b) and FGFR2 (FGFR2b) present in the overlying epithelium. This unidirectional mesenchyme-to-epithelium signaling contributes to the development of essentially all organs, glands, and limbs. Structural analysis has shown that members of the FGF7 subfamily achieve their restricted specificity for FGFR1b/FGFR2b by engaging in specific contacts with two alternatively spliced loop regions in the immunoglobulin-like domain 3 (D3) of these receptors. Weak basal receptor-binding affinity further constrains the FGF7 subfamily's specificity for FGFR1b/2b. In this review, we elaborate on the structural determinants of FGF7 subfamily receptor-binding specificity, and discuss how affinity differences among the four members for the heparin sulfate (HS) co-receptor contribute to their disparate biological activities.

18.
Sci Rep ; 8(1): 15973, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374109

ABSTRACT

Secreted FGF binding proteins (FGFBP) mobilize locally-acting paracrine FGFs from their extracellular storage. Here, we report that FGFBP3 (BP3) modulates fat and glucose metabolism in mouse models of metabolic syndrome. BP3 knockout mice exhibited altered lipid metabolism pathways with reduced hepatic and serum triglycerides. In obese mice the expression of exogenous BP3 reduced hyperglycemia, hepatosteatosis and weight gain, blunted de novo lipogenesis in liver and adipose tissues, increased circulating adiponectin and decreased NEFA. The BP3 protein interacts with endocrine FGFs through its C-terminus and thus enhances their signaling. We propose that BP3 may constitute a new therapeutic to reverse the pathology associated with metabolic syndrome that includes nonalcoholic fatty liver disease and type 2 diabetes mellitus.


Subject(s)
Carbohydrate Metabolism/genetics , Carrier Proteins/genetics , Lipid Metabolism/genetics , Metabolic Syndrome/pathology , Adipose Tissue/metabolism , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/metabolism , Gluconeogenesis/genetics , Glucose Tolerance Test , Lipogenesis/genetics , Liver/metabolism , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Protein Binding , STAT3 Transcription Factor/metabolism , Signal Transduction , Triglycerides/blood
19.
F1000Res ; 72018.
Article in English | MEDLINE | ID: mdl-29983915

ABSTRACT

Upon ligand engagement, the single-pass transmembrane receptor tyrosine kinases (RTKs) dimerize to transmit qualitatively and quantitatively different intracellular signals that alter the transcriptional landscape and thereby determine the cellular response. The molecular mechanisms underlying these fundamental events are not well understood. Considering recent insights into the structural biology of fibroblast growth factor signaling, we propose a threshold model for RTK signaling specificity in which quantitative differences in the strength/longevity of ligand-induced receptor dimers on the cell surface lead to quantitative differences in the phosphorylation of activation loop (A-loop) tyrosines as well as qualitative differences in the phosphorylation of tyrosines mediating substrate recruitment. In this model, quantitative differences on A-loop tyrosine phosphorylation result in gradations in kinase activation, leading to the generation of intracellular signals of varying amplitude/duration. In contrast, qualitative differences in the pattern of tyrosine phosphorylation on the receptor result in the recruitment/activation of distinct substrates/intracellular pathways. Commensurate with both the dynamics of the intracellular signal and the types of intracellular pathways activated, unique transcriptional signatures are established. Our model provides a framework for engineering clinically useful ligands that can tune receptor dimerization stability so as to bias the cellular transcriptome to achieve a desired cellular output.

20.
FASEB J ; 32(7): 3752-3764, 2018 07.
Article in English | MEDLINE | ID: mdl-29481308

ABSTRACT

Severe anemia and iron deficiency are common complications in chronic kidney disease. The cause of renal anemia is multifactorial and includes decreased erythropoietin (Epo) production, iron deficiency, and inflammation, and it is currently treated with injections of synthetic Epo. However, the use of recombinant Epo has several adverse effects. We previously reported that high fibroblast growth factor 23 (FGF23) levels in mice are associated with decreased red blood cell production, whereas genetic inactivation of Fgf23 results in expansion of the erythroid lineage. The present study is the first to show that high FGF23 levels in a mouse model of renal failure contribute to renal anemia, and inhibiting FGF23 signaling stimulates erythropoiesis and abolishes anemia and iron deficiency. Moreover, we show that inhibition of FGF23 signaling significantly decreases erythroid cell apoptosis and influences the commitment of hematopoietic stem cells toward the erythroid linage. Furthermore, we show that blocking FGF23 signaling attenuates inflammation, resulting in increased serum iron and ferritin levels. Our data clearly demonstrate that elevated FGF23 is a causative factor in the development of renal anemia and iron deficiency, and importantly, blocking FGF23 signaling represents a novel approach to stimulate erythropoiesis and possibly improve survival for millions of chronic kidney disease patients worldwide.-Agoro, R., Montagna, A., Goetz, R., Aligbe, O., Singh, G., Coe, L. M., Mohammadi, M., Rivella, S., Sitara, D. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia.


Subject(s)
Anemia, Iron-Deficiency/metabolism , Fibroblast Growth Factors/antagonists & inhibitors , Renal Insufficiency, Chronic/complications , Signal Transduction , Anemia, Iron-Deficiency/drug therapy , Animals , Apoptosis , Cells, Cultured , Erythroid Cells/metabolism , Ferritins/blood , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Iron/blood , Male , Mice , Mice, Inbred C57BL , Oligopeptides/pharmacology , Oligopeptides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...