Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 31(2): 1755-1763, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785203

ABSTRACT

Conventional head-up displays (HUDs) suffer from a limited exit pupil and a lack of compactness mainly due to the use of bulky optics. HUDs need a high-quality image with a large field of view (FOV) in small packaging to gain commercial acceptability. Holographic HUDs are phase-only devices that allow vision correction and focus adjustment while having a wide FOV. However, the limited bandwidth of a spatial light modulator (SLM) imposes a trade-off between the FOV and eye-box size. Combining a holographic system with an image-replicating element eliminates such a tradeoff. For image replication, we designed and fabricated a compact 2D diffractive beam splitter formed from two perpendicular volume gratings operating in the Raman-Nath regime. The gratings were recorded holographically in photo-thermo-refractive (PTR) glass, with optimized index modulation, thickness, and period to provide uniform intensity distribution across all desired orders for the fundamental red, green and blue (RGB) colors. We demonstrated a full-color holographic projection with an eye-box expanded by the designed 2D diffractive beam splitters.

2.
Opt Express ; 30(4): 4988-4998, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209470

ABSTRACT

Past beam-shaping techniques, developed to transform a Gaussian beam into other waveforms, rely on a wide selection of available tools ranging from physical apertures, diffractive optical elements, phase masks, free-form optics to spatial light modulators. However, these devices - whether active or passive - do not address the underlying monochromatic nature of their embedded phase profiles, while being hampered by the complex, high-cost manufacturing process and a restrictive laser-induced damage threshold. Recently, a new type of passive phase devices for beam transformation - referred to as holographic phase masks (HPMs), was developed to address these critical shortcomings. In this work, we demonstrated the first integration of HPMs into a laser cavity for the generation of arbitrary spatial modes. Our approach allowed for different phase patterns to be embedded into the outputs of a laser system, while preserving the spatial structure of its intracavity beams. The optical system further possessed a unique ability to simultaneously emit distinct spatial modes into separate beampaths, owning to the multiplexing capability of HPMs. We also confirmed the achromatic nature of these HPMs in a wavelength-tunable cavity, contrary to other known passive or active beam-shaping tools. The achromatism of HPMs, coupled to their ability to withstand up to kW level of average power, makes possible future developments in high-power broadband sources, capable of generating light beams with arbitrary phase distribution covering any desirable spectral regions from near ultraviolet to near infrared.

3.
Opt Express ; 27(14): 19292-19308, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503691

ABSTRACT

Millimeter wave imaging systems are a promising candidate for several applications such as indoor security, industrial non-destructive evaluation, and automotive radar systems. In this paper, we compare the performance of various array configurations that can be enabled by recent automotive radar chips, for imaging applications. High resolution real-time imaging requires an extensive number of measurements which demands a large number of emitters and receivers. Hence, cost and size become major considerations in the design process. In an attempt to reduce the number of emitter and receiver elements, we compare various antenna array architectures to optimize the hardware implementation for high resolution imaging. We consider mono-static single-input-single-output (SISO), multi-static multiple-input-multiple-output (Full-MIMO), and hybrid localized MIMO-SISO (Local-MIMO) architectures. The computationally reconstructed image quality and point spread function from each architecture are compared and traded for the system engineering complexity and cost. We present measurement results from a Synthetic Aperture Radar (SAR) system based on an automotive radar sensor to ensure it is representative of the system's physics. The comparative results of the SISO, Full-MIMO and Local-MIMO simulations provide for affordable alternatives to the high cost SISO approach.

4.
Appl Opt ; 57(21): 6233-6242, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30118010

ABSTRACT

In this research, we present results of simulated annealing (SA), a heuristic optimization algorithm, for focusing light through a turbid medium. Performance of the algorithm on phase and amplitude modulations has been evaluated. A number of tips to tune the optimization parameters are provided. The effect of measurement noise on the performance of the SA algorithm is explored. Additionally, SA performance is compared with continuous sequential and briefly with other optimization algorithms.

5.
Opt Lett ; 42(16): 3089-3092, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28809880

ABSTRACT

The two-point complex coherence function constitutes a complete representation for scalar quasi-monochromatic optical fields. Exploiting dynamically reconfigurable slits implemented with a digital micromirror device, we report on measurements of the complex two-point coherence function for partially coherent light scattering from a "scene" composing one or two objects at different transverse and axial positions with respect to the source. Although the intensity shows no discernible shadows in the absence of a lens, numerically back-propagating the measured complex coherence function allows estimating the objects' sizes and locations and, thus, the reconstruction of the scene subject to the effects of occlusion and shadowing.

6.
Opt Express ; 25(12): 13087-13100, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788846

ABSTRACT

In the absence of a lens to form an image, incoherent or partially coherent light scattering off an obstructive or reflective object forms a broad intensity distribution in the far field with only feeble spatial features. We show here that measuring the complex spatial coherence function can help in the identification of the size and location of a one-dimensional object placed in the path of a partially coherent light source. The complex coherence function is measured in the far field through wavefront sampling, which is performed via dynamically reconfigurable slits implemented on a digital micromirror device (DMD). The impact of an object - parameterized by size and location - that either intercepts or reflects incoherent light is studied. The experimental results show that measuring the spatial coherence function as a function of the separation between two slits located symmetrically around the optical axis can identify the object transverse location and angle subtended from the detection plane (the ratio of the object width to the axial distance from the detector). The measurements are in good agreement with numerical simulations of a forward model based on Fresnel propagators. The rapid refresh rate of DMDs may enable real-time operation of such a lensless coherency imaging scheme.

7.
J Biomed Opt ; 22(7): 75001, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28697234

ABSTRACT

With the growing application of photoacoustic imaging (PAI) in medical fields, there is a need to make them more compact, portable, and affordable. Therefore, we designed very low-cost PAI systems by replacing the expensive and sophisticated laser with a very low-energy laser diode. We implemented photoacoustic (PA) microscopy, both reflection and transmission modes, as well as PA computed tomography systems. The images obtained from tissue-mimicking phantoms and biological samples determine the feasibility of using a very low-energy laser diode in these configurations.


Subject(s)
Lasers, Semiconductor , Photoacoustic Techniques/instrumentation , Microscopy , Phantoms, Imaging , Photoacoustic Techniques/economics
SELECTION OF CITATIONS
SEARCH DETAIL