Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Commun Signal ; 21(1): 284, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828510

ABSTRACT

BACKGROUND: Gonadotropin-releasing hormone (GnRH) receptors are essential for reproduction and are expressed in numerous urogenital, reproductive, and non-reproductive cancers. In addition to canonical G protein-coupled receptor signaling, GnRH receptors functionally interact with several receptor tyrosine kinases. AXL is a receptor tyrosine kinase expressed in numerous tissues as well as multiple tumors. Here we tested the hypothesis that AXL, along with its endogenous ligand Gas6, impacts GnRH receptor signaling. METHODS: We used clonal murine pituitary αT3-1 and LßT2 gonadotrope cell lines to examine the effect of AXL activation on GnRH receptor-dependent signaling outcomes. ELISA and immunofluorescence were used to observe AXL and GnRH receptor expression in αT3-1 and LßT2 cells, as well as in murine and human pituitary sections. We also used ELISA to measure changes in ERK phosphorylation, pro-MMP9 production, and release of LHß. Digital droplet PCR was used to measure the abundance of Egr-1 transcripts. A transwell migration assay was used to measure αT3-1 and LßT2 migration responses to GnRH and AXL. RESULTS: We observed AXL, along with the GnRH receptor, expression in αT3-1 and LßT2 gonadotrope cell lines, as well as in murine and human pituitary sections. Consistent with a potentiating role of AXL, Gas6 enhanced GnRH-dependent ERK phosphorylation in αT3-1 and LßT2 cells. Further, and consistent with enhanced post-transcriptional GnRH receptor responses, we found that Gas6 increased the abundance of Egr-1 transcripts. Suggesting functional significance, in LßT2 cells, Gas6/AXL signaling stimulated LHß production and enhanced GnRH receptor-dependent generation of pro-MMP9 protein and promoted cell migration. CONCLUSIONS: Altogether, these data describe a novel role for AXL as a modulator of GnRH receptor signaling. Video Abstract.


Subject(s)
Axl Receptor Tyrosine Kinase , Receptors, LHRH , Mice , Humans , Animals , Receptors, LHRH/metabolism , Matrix Metalloproteinase 9/metabolism , Signal Transduction , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism
2.
Epidemiol Health ; 45: e2023083, 2023.
Article in English | MEDLINE | ID: mdl-37723842

ABSTRACT

OBJECTIVES: The worldwide incidence of metabolic syndrome (MetS) has increased in recent decades. In this study, we investigated the socioeconomic inequalities associated with MetS and its components in a sample of the Iranian Kurdish population. METHODS: We used data from 3,996 participants, aged 35 years to 70 years, from the baseline phase of the Dehgolan Prospective Cohort Study (February 2018 to March 2019). The concentration index and concentration curve were used to measure inequality and the Blinder-Oaxaca decomposition method was used to examine the contribution of various determinants to the observed socioeconomic inequality in MetS and its components. RESULTS: The prevalence of MetS was 34.44% (95% confidence interval [CI], 32.97 to 35.93). The prevalence of MetS was 26.18% for those in the highest socioeconomic status (SES), compared with 40.51% for participants in the lowest SES. There was a significant negative concentration index for MetS (C=-0.13; 95% CI, -0.16 to -0.09), indicating a concentration of MetS among participants with a lower SES. The most prevalent component was abdominal obesity (59.14%) with a significant negative concentration index (C=-0.21; 95% CI, -0.25 to -0.18). According to decomposition analysis, age, gender, and education were the highest contributing factors to inequality in MetS and its components. CONCLUSIONS: This study showed socioeconomic inequality in MetS. People with a low SES were more likely to have MetS. Therefore, policymakers and health managers need to develop appropriate strategies to reduce these inequalities in MetS across age groups, genders, and education levels, especially among women and the elderly.


Subject(s)
Metabolic Syndrome , Adult , Aged , Humans , Male , Female , Metabolic Syndrome/epidemiology , Iran/epidemiology , Prospective Studies , Social Class , Obesity/epidemiology , Socioeconomic Factors
3.
Front Endocrinol (Lausanne) ; 14: 1212104, 2023.
Article in English | MEDLINE | ID: mdl-37396176

ABSTRACT

AXL is a receptor tyrosine kinase commonly associated with a variety of human cancers. Along with its ligand Gas6 (growth arrest-specific protein 6), AXL is emerging as an important regulator of neuroendocrine development and function. AXL signaling in response to Gas6 binding impacts neuroendocrine structure and function at the level of the brain, pituitary, and gonads. During development, AXL has been identified as an upstream inhibitor of gonadotropin receptor hormone (GnRH) production and also plays a key role in the migration of GnRH neurons from the olfactory placode to the forebrain. AXL is implicated in reproductive diseases including some forms of idiopathic hypogonadotropic hypogonadism and evidence suggests that AXL is required for normal spermatogenesis. Here, we highlight research describing AXL/Gas6 signaling mechanisms with a focus on the molecular pathways related to neuroendocrine function in health and disease. In doing so, we aim to present a concise account of known AXL/Gas6 signaling mechanisms to identify current knowledge gaps and inspire future research.


Subject(s)
Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins , Humans , Male , Gonadotropin-Releasing Hormone/metabolism , Hypothalamic-Pituitary-Gonadal Axis , Prosencephalon/metabolism , Proto-Oncogene Proteins/metabolism
4.
Front Endocrinol (Lausanne) ; 14: 1132743, 2023.
Article in English | MEDLINE | ID: mdl-37124751

ABSTRACT

Background: In women, placental corticotropin releasing hormone (CRH) can be detected in maternal blood throughout pregnancy and is important in the regulation of the timing of parturition. However, its role in other mammalian species is unclear. In fact, very little is known about the presence and localization of CRH in placentas other than human. In this study we report for the first time the presence of CRH in feline placenta and maternal serum. Methods: Presence of CRH mRNA and protein was assessed using RT-PCR and Western blot, respectively, in at term domestic cat placentas opportunistically obtained at a local animal shelter and spay clinic. In addition, CRH localization within the placenta was demonstrated via immunohistochemistry. Finally, presence of CRH in maternal blood from early (¾21 days) and mid (25-35 days) stages of pregnancy was investigated by ELISA. Results: CRH mRNA and protein were detected in feline placentas, and localized to larger decidual cells and fetal trophoblast cells, including the binucleate cells. CRH was detectable in maternal blood collected from early-stage pregnancies, and amounts significantly increased in mid-gestation samples. Conclusion: This is the first report on the presence and localization of CRH in the feline placenta, and its increase in maternal serum during the first half of pregnancy. These data lay the foundation for future studies to determine if CRH can be used as potential novel marker for early pregnancy diagnosis, determination, and monitoring in felids, and could greatly increase efficiency and success in zoo breeding programs utilizing artificial reproductive technologies for endangered feline species.


Subject(s)
Corticotropin-Releasing Hormone , Placenta , Animals , Cats , Placenta/chemistry , Corticotropin-Releasing Hormone/analysis , Corticotropin-Releasing Hormone/blood , Corticotropin-Releasing Hormone/genetics , Female , Pregnancy/blood , Biomarkers/blood , Enzyme-Linked Immunosorbent Assay , RNA, Messenger/blood
5.
Bioorg Chem ; 128: 106085, 2022 11.
Article in English | MEDLINE | ID: mdl-35964502

ABSTRACT

Since breast cancer is the commonly cause of death among women around the world, diagnosis at the early stages is significantly important to prevent the metastasis of the cancer. Among the various growth factors that are involved in angiogenesis, vascular endothelial growth factor (VEGF) is believed to be the most important factor. Overexpressed VEGF receptor on tumors surface, is particularly interesting for cancer cells targeting purposes. In this study, citric acid dendrimer conjugated with VEGF antagonist peptide was synthesized. The obtained product was confirmed by FT-IR, TEM, DLS, and EDS. In vitro cytotoxicity assay showed no toxicity on normal cells and indicated the notably dose-dependence toxicity on cancer cells. Box-Behnken software as a computational method was used to determine the optimum amount of radiolabeling parameters. Optimized parameters for reducing agent, dendrimer-anti-VEGF, and time were 1.4 mg, 17.5 mg, and about 30 min respectively. Radiochemical purity of radio-labeled conjugated dendrimer was determined about 90 percent. SPECT imaging was done to observe the in vivo accumulation of dendrimer-anti-VEGF in the tumor site. Images showed high accumulation of radio-tracer in the tumor region. All in all, obtained results confirmed our hypothesis that the dendrimer-anti-VEGF can be a good radio-tracer for diagnosis of cancer.


Subject(s)
Breast Neoplasms , Dendrimers , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Spectroscopy, Fourier Transform Infrared , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
6.
Bioorg Chem ; 115: 105211, 2021 10.
Article in English | MEDLINE | ID: mdl-34364048

ABSTRACT

This study for the first time pursues two crucial aims of using Naproxen as a non-steroidal anti-inflammatory drug in a better, non-invasive setting and introducing a simple and biocompatible nano-carrier (Mn/CQD/SiO2) which is a magneto carbon quantum dots modified with mesoporous silica probe which can be served as a drug delivery and tracer system. SiO2modification was doneby mesoporous silica which improves biocompatibility and provideslow cytotoxicity. Naproxen was conjugated to the nano-probe to form Mn/CQD/SiO2@naproxen and biodistribution was investigated. Physicochemical characteristics of the Mn/CQD/SiO2@naproxen were investigated using FT-IR, SEM, TEM, UV-Vis and BET. Antiproliferation assay using MTT assay was performed on HEK-293 cells to determine the cytotoxity of Mn/CQD/SiO2@naproxen. Relaxivity of Mn/CQD/SiO2 was examined thereafter. To investigate the imaging capability of Mn/CQD/SiO2@naproxen and biodistribution of Naproxen, fluorescent imaging was done. To confirm the data, then the levels of COX Gene expression was determined. The specific surface area, pore volume, and pore radius were 44.4 m2/g, 10.23 cm3/g, and 25.9 nm respectively. MTT assay showed no cytotoxicity. Relaxivity of Mn/CQD/SiO2 was higher than conventional Gd-based contrast agent. Fluorescence imaging of Mn/CQD/SiO2@naproxen showed the biodistribution of naproxen. COX Gene expression confirmed the biodistribution data. By increasing the accumulation in liver COX production reduced. All in all, unique features of Mn/CQD/SiO2 including biocompatibility, low toxicity, magnetic and fluorescence properties showed that it can be used in biomedical sciences.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Drug Delivery Systems , Nanoparticles/chemistry , Naproxen/pharmacology , Prostaglandin-Endoperoxide Synthases/metabolism , Quantum Dots/chemistry , Carbon/chemistry , Cyclooxygenase Inhibitors/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Manganese/chemistry , Molecular Structure , Naproxen/chemistry , Optical Imaging , Particle Size , Silicon Dioxide/chemistry , Structure-Activity Relationship
7.
Bioorg Chem ; 96: 103572, 2020 03.
Article in English | MEDLINE | ID: mdl-31982818

ABSTRACT

In this research, early diagnosis of cardiovascular diseases can reduce their mortality and burden. In our study, we developed a new nano-agent, 99mTc-Dendrimer Glyco Conjugate (99mTc-DGC), and assessed its safety and capability for myocardial viability scan. To develop 99mTc-DGC, we first synthesized the dendrimer and then, glucose has been conjugated. Afterwards, we measured toxicity of the product on normal cells by XTT and apoptosis/necrosis methods. We compared the myocardial viability scan (measured by SPECT and dynamic planar imaging) in two rabbit models, with and without infarction. We also assessed the biodistribution of 99mTc-DGC in rats with no infarction. DGC synthesis was confirmed by Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR), liquid chromatography-mass spectrometry (LC-MS), dynamic light scattering (DLS) and static light scattering techniques (SLS). Then radiochemical purity (RCP) was done to present the stability and potential of DGC to complex formation with 99mTc. In vitro cytotoxicity showed nontoxic concentration up to 8 mg/mL. Single Photon Emission Computed Tomography (SPECT) and dynamic planar imaging clearly showed the accumulation of 99mTc-DGC in myocardial. Biodistribution result showed the 2.60% accumulation of 99mTc-DGC in myocardial after 2 h. Our findings indicated 99mTc-DGC to be safe and can accurately diagnose myocardial infarctions at early stages. Human studies to further assess such effects are critical.


Subject(s)
Chromatography, Liquid/methods , Dendrimers/chemistry , Glycoconjugates/chemistry , Heart Diseases/diagnostic imaging , Mass Spectrometry/methods , Organotechnetium Compounds/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Spectroscopy, Fourier Transform Infrared/methods , Animals , Apoptosis/drug effects , Disease Models, Animal , HEK293 Cells , Humans , Organotechnetium Compounds/pharmacokinetics , Organotechnetium Compounds/pharmacology , Rabbits , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
8.
IET Nanobiotechnol ; 13(6): 560-564, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31432786

ABSTRACT

While cancer is the leading cause of human's deaths worldwide, finding an imaging agent which can detect cancer tumours is needed for cancer diagnosis. In the present study, PEG-citrate dendrimer-G2 was used as a nano-carrier of FITC dye and Iohexol to help passive targeting and uptake of both imaging agents in cancer cells/tumour in vitro and in vivo. Dendrimer was synthesisedand the product characterised using LC-MS, FT-IR, DLS, ELS, AFM, and 1HNMR. After FITC loading into dendrimer, MTT was performed to determine the cytotoxicity of formulation on HEK-293 and MCF-7 cells. In vitro imaging using dendrimer-FITC was done via fluorescent microscope thereafter. Moreover, CT imaging using Iohexol was employed to show the targeting nature and ability of the complex to use as imaging agent in vivo. Data yielded in this study corroborate the notion that the promised dendrimer was synthesised properly and had no toxicity along with FITC on normal cell. Furthermore, CT and fluorescent images showed the targeting nature and imaging ability of Iohexol/FITC loaded dendrimer in vitro and in vivo. Overall, results showed promising characteristics of the novel complexes using dendrimer-G2 both in vitro and in vivo.


Subject(s)
Citric Acid/chemistry , Dendrimers/chemistry , Diagnostic Imaging/methods , Fluorescent Dyes/chemistry , Polyethylene Glycols/chemistry , Citrates/chemical synthesis , Citrates/chemistry , Dendrimers/chemical synthesis , Drug Carriers , Fluorescein-5-isothiocyanate/chemistry , Fluorescent Dyes/chemical synthesis , HEK293 Cells , Humans , MCF-7 Cells , Staining and Labeling/methods
9.
Int J Nanomedicine ; 13: 4671-4683, 2018.
Article in English | MEDLINE | ID: mdl-30154653

ABSTRACT

INTRODUCTION: Nowadays, molecular imaging radiopharmaceuticals', nanoparticles', and/or small-molecule biomarkers' applications are increasing rapidly worldwide. Thus, researchers focus on providing the novel, safe, and cost-effective ones. MATERIALS AND METHODS: In the present experiment, technetium-99m (99mTc)-labeled PEG-citrate dendrimer-G2 conjugated with glutamine (nanoconjugate) was designed and assessed as a novel tumor imaging probe both in vitro and in vivo. Nanoconjugate was synthesized and the synthesis was confirmed by Fourier transform infrared, proton nuclear magnetic resonance, liquid chromatography-mass spectrometry, dynamic light scattering, and static light scattering techniques. The toxicity was assessed by XTT and apoptosis and necrosis methods. RESULTS: Radiochemical purity indicates that the anionic dendrimer has a very high potential to complex formation with 99mTc and is also very stable in the human serum in different times. Results from the imaging procedures showed potential ability of nanoconjugates to detect tumor site. CONCLUSION: Suitable features of the anionic dendrimer show that it is a promising agent to improve nanoradiopharmaceuticals.


Subject(s)
Dendrimers/chemistry , Glutamine/chemistry , Lung Neoplasms/diagnostic imaging , Molecular Imaging/methods , Nanoparticles/chemistry , Radiopharmaceuticals/pharmacokinetics , Technetium/pharmacokinetics , Animals , Humans , In Vitro Techniques , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Nanoparticles/administration & dosage , Radiopharmaceuticals/chemistry , Technetium/chemistry , Tissue Distribution , Tumor Cells, Cultured
10.
Sci Rep ; 7(1): 11832, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928437

ABSTRACT

Molecular theranostics is of the utmost interest for diagnosis as well as treatment of different malignancies. In the present study, anionic linear globular dendrimer G2 is employed as a suitable carrier for delivery and AS1411 aptamer is exploited as the targeting agent to carry Iohexol specifically to the human breast cancer cells (MCF-7). Dendrimer G2 was prepared and conjugation of dendrimer and aptamer was carried out thereafter. Based on the data yielded by AFM, morphology of smooth and spherical non-targeted dendrimer changed to the rough aspherical shape when it conjugated. Then, conjugation was confirmed using DLS, ELS and SLS methods. Toxicity on nucleolin positive MCF-7 cells and nucleolin negative HEK-293 cells was assessed by XTT and apoptosis/necrosis assays. In vitro uptake was determined using DAPI-FITC staining and ICP-MS methods. In vivo studies including in vivo CT imaging, pathology and blood tests were done to confirm the imaging ability, bio-safety and targeted nature of the Nano-Theranostics in vivo. In a nutshell, the prepared construction showed promising effects upon decreasing the toxicity of Iohexol on normal cells and accumulation of it in the cancer tumors as well as reducing the number of cancer cells.


Subject(s)
Breast Neoplasms/drug therapy , Dendrimers , Drug Delivery Systems/methods , Iohexol , Theranostic Nanomedicine , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Dendrimers/chemical synthesis , Dendrimers/chemistry , Dendrimers/pharmacokinetics , Dendrimers/pharmacology , Female , HEK293 Cells , Humans , Iohexol/chemistry , Iohexol/pharmacokinetics , Iohexol/pharmacology , MCF-7 Cells , Neoplasm Proteins/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL
...