Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
FEBS J ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38555566

ABSTRACT

This Review aims to coalesce existing knowledge on the human archaeome, a less-studied yet critical non-bacterial component of the human microbiome, with a focus on its interaction with the immune system. Despite a largely bacteria-centric focus in microbiome research, archaea present unique challenges and opportunities for understanding human health. We examine the archaeal distribution across different human body sites, such as the lower gastrointestinal tract (LGT), upper aerodigestive tract (UAT), urogenital tract (UGT), and skin. Variability in archaeal composition exists between sites; methanogens dominate the LGT, while Nitrososphaeria are prevalent on the skin and UAT. Archaea have yet to be classified as pathogens but show associations with conditions such as refractory sinusitis and vaginosis. In the LGT, methanogenic archaea play critical metabolic roles by converting bacterial end-products into methane, correlating with various health conditions, including obesity and certain cancers. Finally, this work looks at the complex interactions between archaea and the human immune system at the molecular level. Recent research has illuminated the roles of specific archaeal molecules, such as RNA and glycerolipids, in stimulating immune responses via innate immune receptors like Toll-like receptor 8 (TLR8) and 'C-type lectin domain family 4 member E' (CLEC4E; also known as MINCLE). Additionally, metabolic by-products of archaea, specifically methane, have demonstrated immunomodulatory effects through anti-inflammatory and anti-oxidative pathways. Despite these advancements, the mechanistic underpinnings of how archaea influence immune activity remain a fertile area for further investigation.

2.
Curr Opin Microbiol ; 67: 102146, 2022 06.
Article in English | MEDLINE | ID: mdl-35427870

ABSTRACT

Since the introduction of Archaea as new domain of life more than 40 years ago, they are no longer regarded as eccentric inhabitants of extreme ecosystems. These microorganisms are widespread in various moderate ecosystems, including eukaryotic hosts such as humans. Indeed, members of the archaeal community are now recognized as paramount constituents of human microbiome, while their definite role in disease or health is not fully elucidated and no archaeal pathogen has been reported. Here, we present a brief overview of archaea residing in and on the human body, with a specific focus on common lineages including Methanobrevibacter, Methanosphaeraand Methanomassilococcales.


Subject(s)
Archaea , Microbiota , Archaea/genetics , Eukaryota , Eukaryotic Cells , Humans , Phylogeny
3.
Microb Drug Resist ; 27(2): 137-144, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32429732

ABSTRACT

Persister cells are a subpopulation of bacteria with the ability of survival when exposed to lethal doses of antibiotics, and are responsible for antibiotic therapy failure and infection recurrences. In this study, we investigated persister cell formation and the role of nisin in combination with antibiotics in reducing persistence in Listeria monocytogenes. We also examined the expression of toxin-antitoxin (TA) systems in persister cells of L. monocytogenes to gain a better understanding of the effect of TA systems on persister cell formation. To induce persistence, L. monocytogenes were exposed to high doses of different antibiotics over a period of 24 hr, and the expression levels of TA system was genes were measured 5 hr after the addition of antibiotics by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. To investigate the effect of nisin, L. monocytogenes was exposed to a combination of nisin and antibiotics. According to our results, L. monocytogenes was highly capable of persister cell formation, and the combination of nisin and antibiotics resulted in reduced persistence. qRT-PCR results showed a significant increase in GNAT/RHH expression among the studied systems. Overall, our results demonstrated the potential of the combination of nisin and antibiotics in reducing persister cell formation, and emphasized the role of the GNAT/RHH system in bacterial persistence.


Subject(s)
Anti-Bacterial Agents/pharmacology , Listeria monocytogenes/drug effects , Nisin/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Polymerase Chain Reaction/methods , Toxin-Antitoxin Systems/drug effects
4.
Iran J Basic Med Sci ; 23(10): 1323-1327, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33149865

ABSTRACT

OBJECTIVES: Human gastrointestinal tract harbors a variety of bacteria with vital roles in human health. Bacteroides fragilis is considered one of the dominant constituents of gut microflora which can act as an opportunistic pathogen leading to various diseases, including colon cancer, diarrhea, uterine and intrathecal abscesses, septicemia, and pelvic inflammation. In this study, multiple locus variable number of tandem repeats analysis (MLVA) was performed to genetically differentiate 50 B. fragilis isolates. MATERIALS AND METHODS: Eight suitable tandem repeats (TRs) were selected by bioinformatics tools and were then subjected to PCR amplification using specific primers. Finally, MLVA profiles were clustered using BioNumerics 7.6 software package. RESULTS: All VNTR loci were detected in all isolates using the PCR method. Overall, B. fragilis isolates were differentiated into 27 distinct MLVA types. The highest diversity index was allocated to TR1, TR2, TR5, TR6, and TR8; with this taken into account, strain type 14 was the most prevalent with 12 strains belonging to this type. Clustering revealed three major clusters of A, B, and C. With regards to the pathogenicity of B. fragilis and the outcomes of infections related to this microorganism, it is imperative to study this microorganism isolated from both patients and healthy individuals. CONCLUSION: This study aimed at evaluating the efficiency of MLVA for the genetic differentiation of B. fragilis. The results of this study indicate the promising efficiency of MLVA typing for cluster detection of this bacterium.

5.
IUBMB Life ; 72(10): 2097-2111, 2020 10.
Article in English | MEDLINE | ID: mdl-32770825

ABSTRACT

The pandemic coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide. To date, there are no proven effective therapies for this virus. Efforts made to develop antiviral strategies for the treatment of COVID-19 are underway. Respiratory viral infections, such as influenza, predispose patients to co-infections and these lead to increased disease severity and mortality. Numerous types of antibiotics such as azithromycin have been employed for the prevention and treatment of bacterial co-infection and secondary bacterial infections in patients with a viral respiratory infection (e.g., SARS-CoV-2). Although antibiotics do not directly affect SARS-CoV-2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co-infection rather than virus itself. To date, a considerable number of bacterial strains have been resistant to various antibiotics such as azithromycin, and the overuse could render those or other antibiotics even less effective. Therefore, bacterial co-infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID-19. Also, the antibiotic-resistant as a result of overusing must be considered. In this review, we will summarize the bacterial co-infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID-19.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Bacterial Infections/epidemiology , COVID-19/epidemiology , Pandemics , Pneumonia, Bacterial/epidemiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Infections/virology , COVID-19/microbiology , COVID-19/virology , Coinfection , Haemophilus influenzae/drug effects , Haemophilus influenzae/pathogenicity , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/drug effects , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Legionella pneumophila/drug effects , Legionella pneumophila/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Respiratory System/drug effects , Respiratory System/microbiology , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/pathogenicity , COVID-19 Drug Treatment
6.
Int Immunopharmacol ; 88: 106928, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32862110

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a pandemic infectious disease caused by the novel coronavirus called SARS-CoV-2. There is a gap in our understanding regarding the immunopathogenesis of COVID-19. However, many clinical trials are underway across the world for screening effective drugs against COVID-19. Nevertheless, currently, no proven effective therapies for this virus exists. The vaccines are deemed as a significant part of disease prevention for emerging viral diseases, since, in several cases, other therapeutic choices are limited or non-existent, or that diseases result in such an accelerated clinical worsening that the efficacy of treatments is restricted. Therefore, effective vaccines against COVID-19 are urgently required to overcome the tremendous burden of mortality and morbidity correlated with SARS-CoV-2. In this review, we will describe the latest evidence regarding outstanding vaccine approaches and the challenges for vaccine production.


Subject(s)
Coronavirus Infections/prevention & control , Drug Development/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Antibodies, Viral/blood , Betacoronavirus , COVID-19 , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/immunology , Humans , Immunogenicity, Vaccine , Lung/immunology , Lung/virology , Pneumonia, Viral/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
7.
Microb Pathog ; 147: 104393, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32711113

ABSTRACT

Various bacterial species, previously known as extracellular pathogens, can reside inside different host cells by adapting to intracellular modes by forming microbial aggregates with similar characteristics to bacterial biofilms. Additionally, bacterial invasion of human cells leads to failure in antibiotic therapy, as most conventional anti-bacterial agents cannot reach intracellular biofilm in normal concentrations. Various studies have shown that bacteria such as uropathogenic Escherichia coli, Pseudomonas aeruginosa, Borrelia burgdorferi,Moraxella catarrhalis, non-typeable Haemophilus influenzae, Streptococcus pneumonia, and group A Streptococci produce biofilm-like structures within the host cells. For the first time in this review, we will describe and discuss the new information about intracellular bacterial biofilm formation and its importance in bacterial infectious diseases.


Subject(s)
Biofilms , Communicable Diseases , Haemophilus Infections , Anti-Bacterial Agents/therapeutic use , Haemophilus influenzae , Humans , Moraxella catarrhalis
8.
IUBMB Life ; 72(9): 1856-1869, 2020 09.
Article in English | MEDLINE | ID: mdl-32516518

ABSTRACT

Staphylococcus aureus is known as a common pathogen that colonizes 30% of healthy humans. Additionally, this bacterium can cause a number of serious infections, that is, endocarditis, bacteremia, pneumonia, wound, skin infections, and tissue abscesses. A variety of cellular and molecular pathways and targets are involved in response against S. aureus. Among them, microRNAs (miRNAs) have crucial roles in response against S. aureus. In this regard, it has been shown that these molecules exert their regulatory roles via modulating a wide range of events, such as inflammatory reactions, host innate, and adaptive immunity. Current works have provided insight into the crucial involvement of miRNAs in immune defense toward Staphylococcal infections. Herein, we highlighted the current findings on the deregulation of different miRNAs in S. aureus-infected cells. Moreover, we summarized the mechanisms and targets of miRNAs in S. aureus infections.


Subject(s)
Biomarkers/analysis , Immunity, Innate/immunology , MicroRNAs/genetics , Staphylococcal Infections/diagnosis , Staphylococcus aureus/immunology , Animals , Humans , Immunity, Innate/genetics , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology
9.
Microb Pathog ; 144: 104194, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32289464

ABSTRACT

BACKGROUND: Brucellosis is one of the most common diseases that afflicts both humans and animals. Bacteria react to stress conditions using different mechanisms one of which is Toxin-Antitoxin (TA) systems. It is believed that the Toxin-Antitoxin (TA) systems have a key role in the chronicity of the disease. This study investigated the expression of TA system genes under acid and antibiotic stresses in Brucella spp. METHODS: Fifty Brucella isolates (17 isolated from animals and 31 isolated from human specimens, and two standard strains) were analyzed using PCR (using two pairs of primers). Then, to determine the effects of sub-MIC of gentamicin on bacterial survival and growth, colony forming unit was quantitated and turbidity was assessed following the treatment of Brucella spp, with ½ MIC of gentamicin at different time intervals. Furthermore, the colony forming unit of Brucella spp, was assessed under acid stress (pH = 5.5) compared to the control (pH = 7.6). Moreover, the expression of TA system genes in Brucella spp, was evaluated 1 h after treatment using qRT-PCR method. RESULTS: A total of 50 isolates, including 41 (82%) Brucella melitensis and 7 (14%) Brucella abortus with two standard strains Brucella melitensis (16 M) and Brucella abortus (B19) were investigated. Our results revealed the reduced growth of Brucella spp. in the presence of sub-MIC of gentamicin compared to the control. Furthermore, according to the results of qRT-PCR assay, gentamicin could increase the expression of TA system genes. Also, results of qRT-PCR showed that under acid stress, the expression of TA system gene COGT/COGAT decreased compared to the control. CONCLUSION: Although the exact role of the TA systems in response to stress is still unclear, our study provided information on the effect of the type II TA systems under the acid and antibiotic stress conditions. However, further studies are still required.


Subject(s)
Acids/pharmacology , Brucella/drug effects , Brucella/genetics , Gentamicins/pharmacology , Toxin-Antitoxin Systems/genetics , Animals , Brucella/isolation & purification , Brucella/metabolism , Brucella abortus , Brucella melitensis , Brucellosis/microbiology , DNA, Bacterial/genetics , Female , Gene Expression Regulation, Bacterial , Genes, Bacterial , Humans , Male , Microbial Sensitivity Tests , Polymerase Chain Reaction , Stem Cells
10.
IUBMB Life ; 72(7): 1271-1285, 2020 07.
Article in English | MEDLINE | ID: mdl-32150327

ABSTRACT

Biofilms are microbial communities established in the self-produced extracellular substances that include up to 80% of associated microbial infections. During biofilm formation, bacterial cells shift from the planktonic forms to aggregated forms surrounded by an extracellular polymeric substance. The bacterial biofilm shows resistance against immune reactions as well as antibiotics and is potentially able to cause disorders by both device-related and nondevice-related infections. The nondevice-related bacterial biofilm infections include dental plaque, urinary tract infections, cystic fibrosis, otitis media, infective endocarditis, tonsillitis, periodontitis, necrotizing fasciitis, osteomyelitis, infectious kidney stones, and chronic inflammatory diseases. In this review, we will summarize and examine the literature about bacterial biofilm infections unrelated to indwelling devices.


Subject(s)
Bacterial Infections/microbiology , Biofilms/growth & development , Animals , Catheters, Indwelling , Humans
11.
Acta Microbiol Immunol Hung ; 67(1): 66-72, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32043369

ABSTRACT

Helicobacter pylori is the most common cause of chronic infection in human and is associated with gastritis, peptic ulcer disease, and adenocarcinoma of mucosa-associated lymphoid tissue cells. Peptide nucleic acid (PNA) is a synthetic compound, which can inhibit the production of a particular gene. This study aimed to investigate the effect of PNA on inhibiting the expression of cagA. After confirmation of the desired gene by polymerase chain reaction (PCR), the antisense sequence was designed against cagA gene. The minimum inhibitory concentrations of conjugated PNA against H. pylori was determined. The effect of the compound on the expression level of the cagA was investigated in HT29 cell culture using real-time PCR. The results showed 2 and 3 log reduction in bacterial count after 8- and 24-h treatment with 4 and 8 µM of the compound, respectively. The lowest expression level of the cagA gene was observed at a concentration of 8 µM after 6 h. The results of this study showed that cell-penetrating peptide antisense can be employed as effective tools for inhibiting the target gene mRNA for various purposes. Moreover, further research is necessary to assess the potency, safety, and pharmacokinetics of CPP-PNAs for clinical prevention and treatment of infections due to H. pylori.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Oligodeoxyribonucleotides, Antisense/pharmacology , Peptide Nucleic Acids/pharmacology , Bacterial Load/drug effects , Cell Line, Tumor , HT29 Cells , Helicobacter pylori/genetics , Humans , Microbial Sensitivity Tests , Oligodeoxyribonucleotides, Antisense/genetics , Peptide Nucleic Acids/genetics , Real-Time Polymerase Chain Reaction
12.
J Glob Antimicrob Resist ; 21: 51-56, 2020 06.
Article in English | MEDLINE | ID: mdl-31520807

ABSTRACT

OBJECTIVES: Sub-inhibitory concentrations (sub-MICs) of antibiotics reflect the conditions that bacteria encounter in tissues and the natural environment. Sub-MICs of antibiotics can induce stress and alter the expression of different bacterial genes. Bacteria react to stress conditions using different mechanisms, one of which is the toxin-antitoxin (TA) system. This study investigated the expression of the TA system genes under oxidative and antibiotic stresses in Klebsiella pneumoniae (K. pneumoniae). METHODS: To determine the effects of sub-MICs of gentamicin, nalidixic acid, ceftazidime, and certain concentrations of H2O2 on bacterial survival and growth, colony forming units were quantitated and turbidity was assessed following the treatment of K. pneumoniae with ½ MICs of antibiotics and 5 mM H2O2 at different time intervals. The expression of TA system genes in K. pneumoniae was evaluated 1 h after treatment using the quantitative real-time PCR (qRT-PCR) method. RESULTS: The results revealed reduced K. pneumoniae growth in the presence of sub-MICs of antibiotics and 5 mM H2O2 compared to the control. Furthermore, according to the results of the qRT-PCR assay, only the presence of gentamicin could increase the expression of TA system genes. CONCLUSION: Although the exact role of the TA systems in response to stress is still unclear, this study provided information on the effect of the type II TA systems under oxidative and antibiotic stress conditions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/growth & development , Oxidative Stress , Toxin-Antitoxin Systems/drug effects , Bacterial Proteins/genetics , Ceftazidime/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Gentamicins/pharmacology , Hydrogen Peroxide/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Microbial Viability/drug effects , Nalidixic Acid/pharmacology
13.
Med J Islam Repub Iran ; 33: 85, 2019.
Article in English | MEDLINE | ID: mdl-31696079

ABSTRACT

Background: Gardnerella vaginalis is considered as the predominant microorganism found in bacterial vaginosis (BV). The aim of this study was to evaluate the prevalence of virulence factors in G. vaginalis associated with BV or non-BV cases and their correlations with this disorder. Methods: A total of 102 vaginal specimens were collected from patients during their visit to Akbar Abadi hospital in Tehran, Iran. Bacterial vaginosis was determined by Nugent score and Amsel's criteria. Polymerase chain reaction (PCR) was used for the detection of G. vaginalis 16S rRNA, vaginolysin, sialidase and phospholipase genes. To evaluate the association between the presence of vly, pho, and sld genes and BV. Pearson Chi-square test was applied using SPSS software. P-value ≤0.05 was considered as significant. Results: Totally, 27.4% of the patients were suffering from BV. Gardnerella vaginalis was found in 100% women with BV and in 56.7% women with normal vaginal discharge. The prevalence of vly, sld and pho genes in BV-associated G. vaginalis was 10 (35.7%) (95% CI [0.18, 0.53]), 19 (67.8%) (95% CI [0.51, 0.85]) and 6 (21.4%) (95% CI [0.06, 0.37]), respectively. The prevalence of the aforementioned genes in non-BV associated G. vaginalis was 20 (47.6%) (95% CI [0.33, 0.63]), 28 (66.6%) (95% CI [0.52, 0.81]), and 5 (11.9%) (95% CI [0.02, 0.22]), respectively. Our results showed no statistically significant association between the presence of the virulence genes and BV associatedness of this microorganism. Conclusion: Our results showed the presence of G. vaginalis in all BV patients and relatively high prevalence in healthy individuals. The prevalence rates of the three virulence genes were different in BV and non-BV associated G. vaginalis; however, the differences were not statistically significant.

14.
Microb Pathog ; 137: 103744, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31521800

ABSTRACT

Listeriosis is a serious infection linked to the consumption of food contaminated with Listeria monocytogenes. Outbreaks and mortality rates associated with this infection make it a significant public health concern. As biocontrol agents, probiotics such as Lactobacillus plantarum had been of interest for the promotion of antilisterial activities. However, a recent bacteriocin from epidemic L. monocytogenes strains called listeriolysin S (LLS) has been identified with the ability to target the prokaryotic cells that may hinder the anti-listerial properties of L. plantarum. The present study was designed to investigate the interplay between serotypes 4b (lineage I, LLS-producing strain) and 1/2a (NCTC7973, lineage II, non LLS-producing strain) L. monocytogenes and L. plantarum ATCC13643. According to the results of the co-culture assay, L. plantarum significantly reduced the growth of LLS- L. monocytogenes. However, there was a significant reduction in the growth of L. plantarum when co-cultured with LLS + L. monocytogenes. Moreover, according to the results of the culture assay using Caco-2 cell line, there was a significant reduced intracellular count of LLS- L. monocytogenes after L. plantarum exposure, whereas, no major differences were observed in the intracellular count of LLS + L. monocytogenes. These results suggest that L. plantarum may be unable to inhibit infections caused by LLS-producing L. monocytogenes. Also, phylogenetic studies showed the presence of LLS-like proteins in several environmental isolates including L. innocua which suggests a role for LLS in survival and bacterial colonization in harsh conditions. In overall, the ability of LLS to target certain bacterial cells should be taken into consideration during the development of anti-listerial probiotics. Future experiments are required to elucidate the exact mechanisms by which LLS achieves bacterial killing.


Subject(s)
Hemolysin Proteins/antagonists & inhibitors , Lactobacillus plantarum/metabolism , Listeria monocytogenes/metabolism , Listeria/drug effects , Bacteriocins/metabolism , Caco-2 Cells , Coculture Techniques , Gene Expression Regulation, Bacterial , Hemolysin Proteins/chemistry , Hemolysin Proteins/classification , Hemolysin Proteins/genetics , Humans , Phylogeny , Probiotics , Sequence Alignment , Sequence Analysis, Protein , Virulence Factors/antagonists & inhibitors
15.
Microb Pathog ; 136: 103689, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31445122

ABSTRACT

As an intracellular pathogen, Listeria monocytogenes can enter host cells where it can replicate and escape detection and eradication by the host immune response making the clearance of infection very challenging. Furthermore, with the advent of antimicrobial resistance, the need for alternative targets is inevitable. Internalin proteins are crucial to this bacterium as they contribute to bacterial entry to the systemic circulation. In this study, we targeted a highly conserved region of these proteins by an antisense sequence that was covalently conjugated to the cell penetrating peptides (CPP) to overcome the challenging delivery barriers. Then, we evaluated the efficiency of this construct in vitro. We also assessed the antigenicity, cytotoxicity, and probability of apoptosis induction by this construct. The studied CPP-PNA inhibited bacterial growth and suppressed the mRNA expression of internalins in a dose-dependent manner. In addition, at all studied concentrations, CPP-PNA significantly reduced the invasion rate of L. monocytogenes in the examined cell lines. Moreover, different concentrations of CPP-PNA did not have a significant antigenic, cytotoxic, and apoptotic properties compared to the control. These results suggest the effectiveness of CPP-antisense in targeting the mRNAs of internalins for various research, therapeutic and preventive purposes. However, additional research is required to evaluate the potency, safety, and pharmacokinetics of this compound for the prevention and treatment of listeriosis.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Proteins/antagonists & inhibitors , Endocytosis/drug effects , Listeria monocytogenes/drug effects , Listeriosis/prevention & control , Oligodeoxyribonucleotides, Antisense/metabolism , Anti-Bacterial Agents/toxicity , Bacterial Proteins/genetics , Caco-2 Cells , Cell Survival/drug effects , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/toxicity , Consensus Sequence , HeLa Cells , Humans , Listeria monocytogenes/genetics , Microbial Sensitivity Tests , Oligodeoxyribonucleotides, Antisense/genetics , Oligodeoxyribonucleotides, Antisense/toxicity
16.
Acta Microbiol Immunol Hung ; 66(4): 499-508, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31198057

ABSTRACT

Staphylococcus epidermidis is an opportunistic pathogen causing infections related to the usage of implants and medical devices. Pathogenicity of this microorganism is mainly linked to its capability to form biofilm structures. Biofilm formation vastly depends on several factors including different proteins. We studied the expression levels of three proteins including SdrH, Bap, AtlE, and MazF at different time intervals during the course of biofilm formation. In this study, a catheter-derived S. epidermidis isolate with strong ability of biofilm formation was selected. PCR assay was used to detect sdrH, bap, atlE, and mazF genes in this isolate. Real-time PCR was used to determine the expression levels of these genes after 4, 8, and 20 h during the course of biofilm formation. The studied genes showed different expression levels at different time intervals during biofilm formation by real-time PCR method. Expression levels of atlE and sdrH genes were the highest at 4 h, whereas bap gene showed the highest expression level at 8 h during the course of biofilm formation. In addition, the expression level of mazF gene peaked at 4 h and then progressively decreased at 8 and 20 h. Our results suggest the importance of AtlE, SdrH, and MazF proteins in the establishment and development of the biofilm structure. In addition, our results showed the important role of protein Bap in the accumulation of biofilm structure. Future studies are required to understand the exact role of MazF in the process of biofilm formation.


Subject(s)
Bacterial Proteins/genetics , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Staphylococcus epidermidis/genetics , Bacterial Adhesion , Staphylococcus epidermidis/physiology , Time Factors
17.
Acta Microbiol Immunol Hung ; 66(2): 189-202, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31062602

ABSTRACT

As an important global health challenge, diarrhea kills nearly two million people each year. Postinfectious irritable bowel syndrome (IBS) usually manifests itself as the diarrhea-predominant subtype. Small intestinal bacterial overgrowth has been observed more frequently in patients with IBS compared to healthy controls. However, the pathophysiology of IBS is not fully understood, and based on recent evidences, altered gut microbiota is involved in the pathogenesis of IBS. Therefore, we aimed to compare the microbiome in hospitalized patients with diarrhea and healthy individuals. Thirty patients and 10 healthy controls were included into this case-control study. Microbial count was performed using quantitative real-time polymerase chain reaction method using bacterial 16S rRNA gene. Clostridium cluster IV and Bacteroides were significantly more frequent in the patients compared with the healthy individuals (p = 0.02 and 0.023, respectively). However, the quantity of Enterococcus and Bifidobacterium groups were significantly higher in healthy controls than in diarrheal group (p = 0.000076 and 0.001, respectively). The results showed that the number of bacteria in all bacterial groups was significantly different between healthy individuals and diabetic group, whereas the difference between the healthy group and IBS was not significant for Bifidobacterium group. The findings of this study outlined the relationship between diarrhea, IBS, and diabetes disease and bacterial composition. It could be concluded that modifying the bacterial composition by probiotics can be helpful in the control and management of the mentioned disease.


Subject(s)
Bacteria/classification , Diarrhea/microbiology , Gastrointestinal Microbiome/genetics , Transcriptome , Bacteria/isolation & purification , Bacteroides/genetics , Bacteroides/isolation & purification , Case-Control Studies , Clostridium/genetics , Clostridium/isolation & purification , DNA, Bacterial/genetics , Diabetes Mellitus/microbiology , Feces/microbiology , Female , Hospitalization , Humans , Irritable Bowel Syndrome/microbiology , Male , Middle Aged , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...