Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244335

ABSTRACT

Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.


Subject(s)
Bone Cements/pharmacology , Boron Compounds/pharmacology , Free Radicals/pharmacology , Methacrylates/pharmacology , Methylmethacrylates/pharmacology , Osteogenesis/drug effects , Animals , Arthroplasty, Replacement, Hip , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Cements/chemistry , Bone Marrow Cells/drug effects , Bone Regeneration/drug effects , Bone and Bones/drug effects , Bone and Bones/pathology , Boranes , Boron Compounds/chemistry , Calcification, Physiologic/drug effects , Cell Line , Cell Survival/drug effects , Free Radicals/chemistry , Hydrophobic and Hydrophilic Interactions , Male , Materials Testing , Methacrylates/chemistry , Methylmethacrylate/chemistry , Methylmethacrylates/chemistry , Osteoblasts/drug effects , Osteoblasts/pathology , Osteogenesis/genetics , Phenotype , Polymerization , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology , Prostheses and Implants , Rats , Rats, Sprague-Dawley
2.
Int J Mol Sci ; 21(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059603

ABSTRACT

Effects of UV-photofunctionalization on bone-to-titanium integration under challenging systemic conditions remain unclear. We examined the behavior and response of osteoblasts from sham-operated and ovariectomized (OVX) rats on titanium surfaces with or without UV light pre-treatment and the strength of bone-implant integration. Osteoblasts from OVX rats showed significantly lower alkaline phosphatase, osteogenic gene expression, and mineralization activities than those from sham rats. Bone density variables in the spine were consistently lower in OVX rats. UV-treated titanium was superhydrophilic and the contact angle of ddH2O was ≤5°. Titanium without UV treatment was hydrophobic with a contact angle of ≥80°. Initial attachment to titanium, proliferation, alkaline phosphatase activity, and gene expression were significantly increased on UV-treated titanium compared to that on control titanium in osteoblasts from sham and OVX rats. Osteoblastic functions compromised by OVX were elevated to levels equivalent to or higher than those of sham-operated osteoblasts following culture on UV-treated titanium. The strength of in vivo bone-implant integration for UV-treated titanium was 80% higher than that of control titanium in OVX rats and even higher than that of control implants in sham-operated rats. Thus, UV-photofunctionalization effectively enhanced bone-implant integration in OVX rats to overcome post-menopausal osteoporosis-like conditions.


Subject(s)
Dental Implants , Osseointegration/drug effects , Osteogenesis/drug effects , Osteoporosis , Titanium/pharmacology , Titanium/radiation effects , Ultraviolet Rays , Alkaline Phosphatase , Animals , Bone Density/drug effects , Bone Regeneration/drug effects , Bone and Bones , Calcification, Physiologic/drug effects , Cell Proliferation , Female , Gene Expression , Hydrophobic and Hydrophilic Interactions , Osteoblasts/drug effects , Osteoblasts/pathology , Osteogenesis/genetics , Ovariectomy , Rats , Rats, Sprague-Dawley , Surface Properties
3.
Implant Dent ; 27(4): 405-414, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29851661

ABSTRACT

OBJECTIVES: Hydrophilicity/hydrophobicity of titanium surfaces may affect osseointegration. Ordinary titanium surfaces are hydrophobic. Recently, 2 different methods of storing titanium in saline solution or treating it with ultraviolet (UV) light were introduced to generate surface hydrophilicity. This study compared biological and physicochemical properties of 2 different hydrophilic titanium surfaces created by these methods. MATERIALS: Acid-etched control, saline-stored, and UV-treated titanium surfaces were assessed by scanning electron microscopy, energy dispersive spectroscopy, and x-ray photoelectron spectroscopy. The attachment, spreading behaviors, mineralization, and gene expression of osteoblasts were examined. RESULTS: Similar microroughness was found on control and UV-treated surfaces, whereas foreign deposits were observed on saline-stored surfaces. Control and UV-treated surfaces consisted of Ti, O, and C, whereas saline-stored surfaces showed Na and Cl in addition to these 3 elements. Atomic percentage of surface carbon was higher in order of control, saline-stored, and UV-treated surfaces. Osteoblasts cultured on saline-stored surfaces showed higher levels of calcium deposition and collagen I expression than control. Osteoblasts on UV-treated surfaces showed significantly increased levels for all parameters related to cell attachment, cell spreading, the expression of adhesion and cytoskeletal proteins, mineralization, and gene expression compared with control, outperforming saline-stored surfaces for most parameters. CONCLUSION: Despite similar hydrophilicity, saline-stored and UV light-treated surfaces showed substantially different biological effects on osseointegration, associated with different surface chemistry and morphology.


Subject(s)
Osteoblasts/metabolism , Titanium/chemistry , Acid Etching, Dental , Cell Adhesion , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Osseointegration/physiology , Photoelectron Spectroscopy , Sodium Chloride , Spectrometry, X-Ray Emission , Surface Properties , Ultraviolet Rays
4.
Daru ; 21(1): 59, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23866761

ABSTRACT

BACKGROUND: Pain following surgical removal of impacted molars has remained an important concern among practitioners. Various protocols have been proposed to reduce postoperative pain. However, each one has special side effects and limitations. As green tea possesses anti-inflammatory and antibacterial properties, the aim of the current study was to evaluate the effectiveness of green tea mouthwash in controlling postoperative pain. MATERIALS AND METHODS: In a study with split-mouth and double blind design, 44 patients in need of bilateral removal of impacted third molars underwent randomized surgical extraction; following one surgery patients rinsed with a green tea mouthwash from the first to seventh postoperative day and after other extraction rinsed with placebo mouthwash in the same duration. Both patients and surgeon were blinded to the type of mouthwash. The predictor variable was type of mouthwash and primary outcome variable was postoperative pain measured by visual analogue scale (VAS) during first week after surgery. In addition, number of analgesics patients used after surgery recorded. To measure the effect of green tea mouthwash, repeated measures test with confidence interval of 95% was performed. RESULTS: Total of 43 patients with mean age of 24 years underwent total of 86 surgeries. VAS value had no statistically difference prior rinsing among groups (P-value > 0.05). However, the mean value of VAS following rinsing with green tea was statistically lower than placebo in postoperative days of 3-7 (P-value < 0.05). In addition, while rinsing with green tea, patients took significantly lower number of analgesics after surgery (P-value < 0.05). No side effects reported. CONCLUSION: Green tea mouthwash could be an appropriate and safe choice to control postoperative pain after third molar surgery.


Subject(s)
Analgesics/therapeutic use , Camellia sinensis/chemistry , Molar, Third/surgery , Mouthwashes/therapeutic use , Pain, Postoperative/drug therapy , Plant Extracts/therapeutic use , Tooth Extraction/adverse effects , Adolescent , Adult , Double-Blind Method , Female , Humans , Male , Tooth, Impacted/surgery , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...