Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Commun Biol ; 7(1): 937, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095591

ABSTRACT

Peste des petits ruminants virus (PPRV) is a multi-host pathogen with sheep and goats as main hosts. To investigate the role of cattle in the epidemiology of PPR, we simulated conditions similar to East African zero-grazing husbandry practices in a series of trials with local Zebu cattle (Bos taurus indicus) co-housed with goats (Capra aegagrus hircus). Furthermore, we developed a mathematical model to assess the impact of PPRV-transmission from cattle to goats. Of the 32 cattle intranasally infected with the locally endemic lineage IV strain PPRV/Ethiopia/Habru/2014 none transmitted PPRV to 32 co-housed goats. However, these cattle or cattle co-housed with PPRV-infected goats seroconverted. The results confirm previous studies that cattle currently play a negligible role in PPRV-transmission and small ruminant vaccination is sufficient for eradication. However, the possible emergence of PPRV strains more virulent for cattle may impact eradication. Therefore, continued monitoring of PPRV circulation and evolution is recommended.


Subject(s)
Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-Petits-Ruminants/transmission , Peste-des-Petits-Ruminants/virology , Peste-des-Petits-Ruminants/epidemiology , Cattle , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/physiology , Goats/virology , Goat Diseases/virology , Goat Diseases/transmission , Cattle Diseases/transmission , Cattle Diseases/virology , Cattle Diseases/epidemiology , Disease Eradication/methods
2.
BMC Vet Res ; 19(1): 120, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573362

ABSTRACT

BACKGROUND: Aeromonas hydrophila is a zoonotic bacterial pathogen that frequently causes disease and mass mortalities among cultured and feral fishes worldwide. In Ethiopia, A. hydrophila outbreak was reported in Sebeta fish ponds and in Lake Tana fishery. However, there is no to little information on the molecular, and phenotypical characteristics of A. hydrophila in Ethiopian fisheries. Therefore, a cross-sectional study was conducted from November 2020 to May 2021 in selected Ethiopian Rift valley lakes. RESULTS: A total of 140 samples were collected aseptically from fish (Muscle, Gill, Intestine, Spleen and Kidney) from fish landing sites, market and restaurants with purposive sampling methods. Aeromonas selective media (AMB), morphological and biochemical tests were used to isolate and identify A. hydrophila. Accordingly, the pathogen was isolated from 81 (60.45%) of samples. Among the isolates 92.59% expressed virulence trait through ß hemolysis on blood agar media with 5% sheep blood. Moreover, 54 strains (66.67%) were further confirmed with Real-Time PCR (qPCR) using ahaI gene specific primers and optimized protocol. The highest (68.51%) were detected from live fish, (24.07%) were from market fish and the lowest (7.4%%) were from ready-to-eat products. Antibiogram analysis was conducted on ten representative isolates. Accordingly, A. hydrophila isolates were susceptible to ciprofloxacin (100%), chloramphenicol (100%) and ceftriaxone (100%). However, all ten isolates were resistant to Amoxicillin and Penicillin. CONCLUSIONS: The study indicates A. hydrophila strains carrying virulence ahaI gene that were ß-hemolytic and resistant to antibiotics commonly used in human and veterinary medicine are circulating in the fishery. The detection of the pathogen in 140 of the sampled fish population is alarming for potential outbreaks and zoonosis. Therefore, further molecular epidemiology of the disease should be studied to establish potential inter host transmission and antibiotic resistance traits. Therefore, raising the public awareness on risk associated with consuming undercooked or raw fish meat is pertinent.


Subject(s)
Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Sheep Diseases , Humans , Animals , Sheep , Cichlids/microbiology , Aeromonas hydrophila/genetics , Lakes , Ethiopia/epidemiology , Cross-Sectional Studies , Fish Products , Microbial Sensitivity Tests/veterinary , Fish Diseases/epidemiology , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology
3.
BMC Microbiol ; 22(1): 254, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36266634

ABSTRACT

INTRODUCTION: Peste des petits ruminants virus (PPRV) causes a highly devastating disease of sheep and goats, peste des petits ruminants (PPR), which is targeted for global control and eradication by 2030. The serological diagnostic tool kits for accurate diagnosis of PPR have inherent strengths and weaknesses that require parallel validation and optimization across animal species. Thus, the objective of this study was to evaluate diagnostic performance of haemagglutinin based PPR blocking ELISA (HPPR- b-ELISA), that was developed by Africa Union Pan African Veterinary Vaccine Center for specific detection of anti- PPRV antibodies. METHODS: In preliminarily investigation, diagnostic performance of the HPPR-b-ELISA®, commercial PPR competition ELISA (c-ELISA) and virus neutralization test (VNT) were compared for the detection of anti-PPRV antibodies in goats, sheep, cattle and camels. RESULTS: The sensitivity and specificity of HPPR- b-ELISA® were 79.55 and 99.74%, respectively, compared to c-ELISA. The HPPR- b-ELISA® was in perfect agreement (κ = 0.86) with the c-ELISA in all sera collected from goats, sheep and cattle. There was almost perfect agreement between the species of goats (κ = 0.82) and sheep (κ = 0.98), while the agreement was substantial in cattle (κ = 0.78) and no agreement was observed in camels (κ = 0.00). Similarly, the sensitivity and specificity of the HPPR b-ELISA were 80 and 96.36%, respectively compared to VNT with almost perfect agreement in goats (κ = 0.83) and sheep (κ = 0.89), moderate in cattle (κ = 0.50) and none in camels (κ = 0.00). CONCLUSION: Our study revealed that HPPR- b-ELISA is a suitable and valid method that can alternatively be used for screening and monitoring of PPR in sheep, goats and cattle except for camels.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Cattle , Sheep , Animals , Peste-des-Petits-Ruminants/diagnosis , Goats , Camelus , Sheep, Domestic , Hemagglutinins , Goat Diseases/diagnosis , Sheep Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral , Ruminants
4.
Adv Virol ; 2022: 5329898, 2022.
Article in English | MEDLINE | ID: mdl-35677589

ABSTRACT

Peste des petits ruminants (PPR) is one of the most important transboundary diseases of small ruminants. In this study, nasal and oral swabs (n = 24) were collected from sheep (n = 7) and goats (n = 17) with clinical signs in southern Ethiopia in March 2020. PPR virus was isolated on Vero dog cells expressing the signaling lymphocyte activation molecule (VDS) and screened using RT-qPCR. Positive samples were confirmed by conventional RT-PCR followed by sequencing of a partial nucleoprotein (N) gene segment. Results revealed that 54% (n = 13/24) of the tested samples were PPRV-positive Phylogenetic analysis revealed that the viruses belonged to lineage IV and lineage II. The lineage IV viruses were similar, although not identical, to other lineage IV viruses previously reported in Ethiopia and other East African countries while the lineage II viruses have been reported for the first time in Ethiopia showed a high nucleotide identity (99.06%) with the vaccine (Nigeria 75/1) that is currently used in Ethiopia for the prevention of PPR. Further investigations are therefore recommended in order to fully understand the true nature of the lineage II PPRVs in Ethiopia.

SELECTION OF CITATIONS
SEARCH DETAIL