Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Biomater Sci Polym Ed ; : 1-16, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923918

ABSTRACT

This study aimed to synthesize and characterize chitosan-coated noisomal doxorubicin for the purpose of enhancing its medical application, particularly in the field of cancer treatment. Doxorubicin, a potent chemotherapeutic agent, was encapsulated within noisomes, which are lipid-based nanocarriers known for their ability to efficiently deliver drugs to target sites. Chitosan, a biocompatible and biodegradable polysaccharide, was used to coat the surface of the noisomes to improve their stability and enhance drug release properties. The synthesized chitosan-coated noisomal doxorubicin was subjected to various characterization techniques to evaluate its physicochemical properties. Transmission electron microscopy (TEM) revealed a spherical structure with a diameter of 500-550 ± 5.45 nm and zeta potential of +11 ± 0.13 mV with no aggregation or agglomeration. Chitosan-coated noisomes can loaded doxorubicin with entrapping efficacy 75.19 ± 1.45%. While scanning electron microscopy (SEM) revealed well-defined pores within a fibrous surface. It is observed that chitosan-coated niosomes loading doxorubicin have optimum roughness (22.88 ± 0.71 nm). UV spectroscopy was employed to assess the drug encapsulation efficiency and release profile. Differential scanning calorimetry (DSC) helped determine the thermal behavior, which indicated a broad endotherm peak at 52.4 °C, while X-ray diffraction (XRD) analysis provided information about the crystallinity of the formulation with an intense peak at 23.79°. Fourier-transform infrared spectroscopy (FTIR) indicated the formation of new bonds between the drug and the polymer. The findings from this study will contribute to the knowledge of the physical and chemical properties of the synthesized formulation, which is crucial for ensuring its stability, drug release kinetics, and biological activity. The enhanced chitosan-coated noisomal doxorubicin has the potential to improve the effectiveness and safety of doxorubicin in cancer treatment, offering a promising strategy for enhanced medical applications.

2.
Article in English | MEDLINE | ID: mdl-38918977

ABSTRACT

INTRODUCTION: Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases. METHOD: The current study is intended to explore the cardioprotective effect of ethanolic Moringa oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart. RESULTS: It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status. CONCLUSION: Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.

3.
Neurochem Res ; 49(4): 919-934, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38114728

ABSTRACT

The growing prevalence of aged sleep-deprived nations is turning into a pandemic state. Acute sleep deprivation (SD) accompanies aging, changing the hippocampal cellular pattern, neurogenesis pathway expression, and aggravating cognitive deterioration. The present study investigated the ability of Near Infra Red (NIR) light laser to ameliorate cognitive impairment induced by SD in young and senile rats. Wistar rats ≤ 2 months (young) and ≥ 14 months (senile) were sleep-deprived for 72 h with or without transcranial administration of NIR laser of 830 nm. Our results showed that NIR photobiomodulation (PBM) attenuated cognitive deterioration made by SD in young, but not senile rats, while both sleep-deprived young and senile rats exhibited decreased anxiety (mania)-like behavior in response to PBM. NIR PBM had an inhibitory effect on AChE, enhanced the production of ACh, attenuated ROS, and regulated cell apoptosis factors such as Bax and Bcl-2. NIR increased mRNA expression of BDNF and GLP-1 in senile rats, thus facilitating neuronal survival and differentiation. The present findings also revealed that age exerts an additive factor to the cellular assaults produced by SD where hippocampal damages made in 2-month rats were less severe than those of the aged one. In conclusion, NIR PBM seems to promote cellular longevity of senile hippocampal cells by combating ROS, elevating neurotrophic factors, thus improving cognitive performance. The present findings provide NIR as a possible candidate for hippocampal neuronal insults accompanying aging and SD.


Subject(s)
Brain-Derived Neurotrophic Factor , Sleep Deprivation , Rats , Animals , Sleep Deprivation/complications , Brain-Derived Neurotrophic Factor/metabolism , Reactive Oxygen Species/metabolism , Rats, Wistar , Glucagon-Like Peptide 1/metabolism , Sleep, REM , Hippocampus/metabolism , Transcription Factors/metabolism
4.
Behav Brain Res ; 458: 114731, 2024 02 26.
Article in English | MEDLINE | ID: mdl-37898350

ABSTRACT

Insufficient sleep is associated with impaired hypothalamic activity and declined attentional performance. In this study, alterations in the hypothalamus of REM sleep-deprived (SD) young and aged rats, and the modulatory effect of near-infrared (NIR) laser were investigated. Forty-eight male Wistar rats (24 young at 2 months and 24 senile at 14 months) were divided into three groups: the control, the SD group subjected to 72 hr of sleep deprivation, and the transcranial-NIR laser-treated (TLT) group subjected to SD for 72 hr and irradiated with 830 nm laser. The hypothalamic levels of oxidative stress, inflammatory biomarkers, antioxidant enzymes, mitochondrial cytochrome C oxidase (CCO), apoptotic markers (BAX, BCL-2), and neuronal survival-associated genes (BDNF, GLP-1) were evaluated. Furthermore, the hypothalamic tissue alterations were analyzed via histological examination. The results revealed that TLT treatment has enhanced the antioxidant status, prevented oxidative insults, suppressed neuroinflammation, regulated CCO activity, reduced apoptotic markers, and tuned the survival genes (BDNF & GLP-1) in hypothalamic tissue of SD young and aged rats. Microscopically, TLT treatment has ameliorated the SD-induced alterations and restored the normal histological features of hypothalamus tissue. Moreover, the obtained data showed that SD and NIR laser therapy are age-dependent. Altogether, our findings emphasize the age-dependent adverse effects of SD on the hypothalamus and suggest the use of low-laser NIR radiation as a potential non-invasive and therapeutic approach against SD-induced adverse effects in young and aged animals.


Subject(s)
Antioxidants , Brain-Derived Neurotrophic Factor , Rats , Male , Animals , Antioxidants/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Rats, Wistar , Hypothalamus/metabolism , Sleep Deprivation/complications , Glucagon-Like Peptide 1
5.
Sci Rep ; 13(1): 19712, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37953299

ABSTRACT

Fibromyalgia (FM) is a chronic disorder characterized by widespread musculoskeletal pain, fatigue, and cognitive impairment. Despite the availability of various treatment options, FM remains a challenging condition to manage. In the present study, we investigated the efficacy of formulated nanodispersions of lutein and beta-carotene in treating FM-related symptoms induced by reserpine in female Wistar rats. Several techniques have been implemented to assess this efficacy at various levels, including biochemical, bioelectrical, and behavioral. Namely, oxidative stress markers, monoamine levels, electrocorticography, pain threshold test, and open field test were conducted on control, FM-induced, and FM-treated groups of animals. Our results provided compelling evidence for the efficacy of carotenoid nanodispersions in treating FM-related symptoms. Specifically, we found that the dual action of the nanodispersion, as both antioxidant and antidepressant, accounted for their beneficial effects in treating FM. With further investigation, nano-carotenoids and particularly nano-lutein could potentially become an effective alternative treatment for patients with FM who do not respond to current treatment options.


Subject(s)
Fibromyalgia , beta Carotene , Humans , Female , Rats , Animals , Lutein/pharmacology , Lutein/therapeutic use , Fibromyalgia/drug therapy , Rats, Wistar , Carotenoids
6.
Photochem Photobiol Sci ; 22(12): 2891-2904, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917308

ABSTRACT

Photobiomodulation (PBM) of deep brain structures through transcranial infrared irradiation might be an effective treatment for Parkinson's disease (PD). However, the mechanisms underlying this intervention should be elucidated to optimize the therapeutic outcome and maximize therapeutic efficacy. The present study aimed at investigating the oxidative stress-related parameters of malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) and the enzymatic activities of sodium-potassium-ATPase (Na+, K+-ATPase), Acetylcholinesterase (AChE), and monoamine oxidase (MAO) and monoamine levels (dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the midbrain and striatum of reserpine-induced PD in an animal model treated with PBM. Furthermore, the locomotor behavior of the animals has been determined by the open field test. Animals were divided into three groups; the control group, the PD-induced model group, and the PD-induced model treated with the PBM group. Non-invasive treatment of animals for 14 days with 100 mW, 830 nm laser has demonstrated successful attainment in the recovery of oxidative stress, and enzymatic activities impairments induced by reserpine (0.2 mg/kg) in both midbrain and striatum of adult male Wistar rats. PBM also improved the decrease in DA, NE, and 5-HT in the investigated brain regions. On a behavioral level, animals showed improvement in their locomotion activity. These findings have shed more light on some mechanisms underlying the treatment potential of PBM and displayed the safety, easiness, and efficacy of PBM treatment as an alternative to pharmacological treatment for PD.


Subject(s)
Low-Level Light Therapy , Parkinsonian Disorders , Rats , Male , Animals , Reserpine/pharmacology , Rats, Wistar , Serotonin , Acetylcholinesterase , Mesencephalon , Dopamine , Adenosine Triphosphatases , Disease Models, Animal
7.
Life Sci ; 334: 122257, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37949207

ABSTRACT

Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , Oxidative Stress , Alzheimer Disease/drug therapy , Parkinson Disease/metabolism
8.
Int J Biol Macromol ; 253(Pt 6): 127045, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37776934

ABSTRACT

This study aims to address the issue of environmental pollution caused by non-biodegradable petroleum-based food packaging by exploring the application of biodegradable films. Film casting was employed to fabricate food packaging films from chitosan (CS) and polyvinyl alcohol (PVA) polymers blended with moringa extract (MoE) and various concentrations of magnesium oxide nanoparticles (MgO NPs). The films were characterized through multiple techniques, including UV spectroscopy, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR). The study investigated the physicomechanical properties, water solubility, water vapor transmission rate, oxygen permeability, migration test, biodegradability, contact angle, anti-fogging, antibacterial and antifungal activity, and application of the films for food packaging. The results showed that blending CS/PVA films with MoE and MgO NPs significantly improved their mechanical properties. The highest tensile strength of 98 MPa was observed in the CPMMgO-0.5 film. The solubility of the films was low, with CPMMgO-0 and CPMMgO-0.25 demonstrating the lowest solubility as weight decreased by 3.41 % and 3.47 %, respectively. The water vapor transmission rate and oxygen permeability decreased with increasing MgO NP concentrations, with the CPMMgO-0.5 film exhibiting the lowest values. The films also demonstrated good biodegradability, anti-fogging ability, antibacterial and antifungal activity, and low water solubility, enabling bead encapsulation over 14 days in good condition. Moreover, the thermal stability of the films was improved, extending the shelf life of bread. Therefore, the fabricated films provide a promising alternative to non-degradable plastic packaging, which heavily contributes to environmental pollution.


Subject(s)
Chitosan , Nanoparticles , Chitosan/chemistry , Food Packaging/methods , Magnesium Oxide , Antifungal Agents , Steam , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Oxygen
9.
Iran J Basic Med Sci ; 26(9): 1068-1075, 2023.
Article in English | MEDLINE | ID: mdl-37605718

ABSTRACT

Objectives: Febrile seizures (FS) are the most common neurological disorder at a young age in humans. Animal models of hyperthermia-induced seizures provide a tool to investigate the underlying mechanisms of FS related to epilepsy development and its co-morbidities. The present study investigates the alterations in monoamine neurotransmitters in two brain areas: the cortex and the hippo-campus in animals subjected to prolonged FS at their immature age. Materials and Methods: Experimental animals were divided into three groups: cage-control group (NHT-NFS), positive hyperthermic control group (HT-NFS), and the hyperthermia-induced febrile seizure group (HT-FS). Each group was further subdivided into young (Y) and adult (A) groups. Results: There were significant changes in the cortical and hippocampal serotonin neurotransmitters that were persistent until adulthood. However, the changes in the two other neurotransmitters, norepinephrine and dopamine, were transient and have been recovered in adulthood. Conclusion: The present study sheds more light on the importance of monoamine neurotransmitters in epileptogenesis following FS.

10.
Metab Brain Dis ; 38(5): 1513-1529, 2023 06.
Article in English | MEDLINE | ID: mdl-36847968

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Rats , Male , Animals , Reserpine/pharmacology , Rats, Wistar , Lithium , Acetylcholinesterase , Disease Models, Animal
11.
J Fluoresc ; 33(4): 1631-1639, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36808529

ABSTRACT

Olive oils are more expensive compared with other vegetable oils. Therefore, adulterating such expensive oil is prevalent. The traditional methods for olive oil adulteration detection are complex and require pre-analysis sample preparation. Therefore, simple and precise alternative techniques are required. In the present study, the Laser-induced fluorescence (LIF) technique was implemented for detecting alteration and adulteration of olive oil mixed with sunflower or corn oil based on the post-heating emission characteristics. Diode-pumped solid-state laser (DPSS, λ = 405 nm) was employed for excitation and the fluorescence emission was detected via an optical fiber connected to a compact spectrometer. The obtained results revealed alterations in the recorded chlorophyll peak intensity due to olive oil heating and adulteration. The correlation of the experimental measurements was evaluated via partial least-squares regression (PLSR) with an R-squared value of 0.95. Moreover, the system performance was evaluated using receiver operating characteristics (ROC) with a maximum sensitivity of 93%.


Subject(s)
Food Contamination , Heating , Olive Oil/analysis , Food Contamination/analysis , Plant Oils/analysis , Least-Squares Analysis
12.
Sci Rep ; 12(1): 22642, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36587179

ABSTRACT

Metal nanoparticles, in general, and silver nanoparticles (AgNPs), in particular, have been the focus of numerous studies over the last two decades. Recently, the green synthesis of metal nanoparticles has been favored over chemical synthesis due to its low toxicity and easy preparation. The present study aims to investigate the dose-dependent toxicity of green synthesized AgNPs on rats' brains. Thirty-four Wistar male rats were divided into four groups. The first, second, and third groups were administered for 14 days with three different doses (0.5, 5, and 10 mg/kg) of AgNPs, respectively. The fourth group, which served as a control group, was given normal saline for the same period. The toxicity of the green synthesized AgNPs on the cortical and hippocampal levels of the oxidative stress markers (MDA, NO, and GSH) as well as the activity of acetylcholinesterase (AchE) and the monoamine neurotransmitters (DA, NE, and 5H-T) were investigated. AgNPs showed minimal oxidative stress in the cortex and hippocampus for the administered doses. However, AgNPs showed an inhibitory effect on AchE activity in a dose-dependent manner and a decrease in the 5H-T and NE levels. The green synthesized AgNPs showed an ultrastructural change in the cellular membranes of the neurons. The green synthesis of AgNPs has reduced their cytotoxic oxidative effects due to their capping with biologically compatible and boosting molecules such as flavonoids. However, another neurotoxicity was observed in a dose-dependent manner.


Subject(s)
Metal Nanoparticles , Silver , Rats , Animals , Male , Silver/chemistry , Rats, Wistar , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Acetylcholinesterase , Plant Extracts/pharmacology , Brain , Green Chemistry Technology
13.
Photochem Photobiol Sci ; 21(12): 2231-2241, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36030490

ABSTRACT

Annona squamosa is a medicinal plant that has been used in folk medicine since antiquity. The goal of this study is to see how effective Annona squamosa leaf extract (A.S.L.E) or its niosomal-entrapped preparation is at protecting skin from UVA irradiation. The prepared niosomal-entrapped A.S.L.E has been characterized via spectrophotometry and transmission electron microscopy imaging. Furthermore, the entrapment efficiency and in vitro release of A.S.L.E were determined. In this study, ex vivo and freshly prepared samples from the dorsal region of the rats' skin were used as biological samples, which were divided into five groups: control UVA-unexposed, unprotected UVA-exposed, A.S.L.E-protected UVA-exposed, and niosomal-entrapped A.S.L.E UVA-exposed. UVA irradiation was performed by exposing the skin samples to a UVA-producing lamp for 4 h. Samples from various groups were then examined using FTIR spectroscopy, histopathology, and protein electrophoresis methods. The results showed that A.S.L.E has a skin protective effect against UVA irradiation. The niosomal-entrapped A.S.L.E was more effective than the native plant leaf extract in protecting skin from the damaging effects of UVA. Therefore, the nanotechnologically formulated preparation, niosomal-entrapped A.S.L.E, can be used as an effective photoprotector (sunscreen) against the adverse effects of UVA radiation.


Subject(s)
Annona , Animals , Rats , Plant Extracts/pharmacology
14.
Life Sci ; 307: 120869, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35940222

ABSTRACT

Noninvasive brain stimulation/modulation is a rapidly emerging technique that has been implemented in different clinical applications. The commonly noninvasive techniques used in neurological manipulations include photobiomodulation (PBM), transcranial electrical stimulation (TES), transcranial magnetic stimulation (TMS), and ultrasound stimulation (USS). These techniques have the ability to excite, inhibit, or modulate neuronal activity in targeted brain areas to obtain the required therapeutic effects. However, each technique owns its unique mechanism of action that relies on specific parameters suitable for treating certain neurological disorders. Neurological disorders such as epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and depression have been treated by one or more of these noninvasive techniques. The therapeutic outcomes of these techniques for neurological diseases are promising, yet with limitations. In the present review, the mechanisms of action of these different brain stimulation/modulation modalities were explored and a synopsis of their applications in the treatment of certain neurological disorders was provided. Moreover, methodological issues, limitations, and open questions were presented. Furthermore, some future directions were suggested.


Subject(s)
Nervous System Diseases , Parkinson Disease , Transcranial Direct Current Stimulation , Brain , Humans , Nervous System Diseases/therapy , Parkinson Disease/therapy , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods
15.
Metab Brain Dis ; 37(2): 343-357, 2022 02.
Article in English | MEDLINE | ID: mdl-35048324

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease that afflicts millions of people all over the world. Intracerebroventricular (ICV) injection of a sub-diabetogenic dose of streptozotocin (STZ) was established as an experimental animal model of AD. The present study was conducted to evaluate the efficacy of curcumin nanoparticles (CNs) against the behavioral, neurochemical and histopathological alterations induced by ICV-STZ. The animals were divided into: control animals, the animal model of AD that received a single bilateral ICV microinjection of STZ, and the animals protected by a daily oral administration of CNs for 6 days before the ICV-STZ injection. The animals of all groups were subjected to surgical operation on the 7th day of administration. Then the administration of distilled water or CNs was continued for 8 days. The ICV-STZ microinjection produced cognitive impairment as evident from the behavioral Morris water maze (MWM) test and induced oxidative stress in the cortex and hippocampus as indicated by the significant increases in lipid peroxidation and nitric oxide (NO) levels and the significant decrease in reduced glutathione (GSH) levels. It also produced a significant increase in acetylcholinesterase (AChE) and tumor necrosis-alpha (TNF-ɑ) and a significant decrease in Na+,K + -ATPase. In addition, a significant increase in amino acid neurotransmitters occurred in the hippocampus, whereas a significant decrease was obtained in the cortex of STZ-induced AD rats. CNs ameliorated the behavioral, immunohistochemical and most of the neurochemical alterations induced by STZ in the hippocampus and cortex. It may be concluded that CNs might be considered as a promising therapeutic agent for the treatment of AD.


Subject(s)
Alzheimer Disease , Curcumin , Nanoparticles , Neurodegenerative Diseases , Acetylcholinesterase/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Disease Models, Animal , Humans , Male , Maze Learning , Oxidative Stress , Rats , Rats, Wistar , Streptozocin/toxicity
16.
PLoS One ; 17(1): e0263164, 2022.
Article in English | MEDLINE | ID: mdl-35100314

ABSTRACT

Infrared (IR) lasers are extensively utilized as an effective tool in many medical practices. Nevertheless, light penetration into the inspected tissue, which is highly affected by tissue optical properties, is a crucial factor for successful optical procedures. Although the optical properties are highly wavelength-dependent, they can be affected by the power of the incident laser. The present study demonstrates a considerable change in the scattering and absorption coefficients as a result of varying the incident laser power probing into biological samples at a constant laser wavelength (808 nm). The optical parameters were investigated using an integrating sphere and Kubelka-Munk model. Additionally, fluence distribution at the sample's surface was modeled using COMSOL-multiphysics software. The experimental results were validated using Receiver Operating Characteristic (ROC) curves and Monte-Carlo simulation. The results showed that tissue scattering coefficient decreases as the incident laser power increases while the absorption coefficient experienced a slight change. Moreover, the penetration depth increases with the optical parameters. The reduction in the scattering coefficients leads to wider and more diffusive fluence rate distribution at the tissue surface. The simulation results showed a good agreement with the experimental data and revealed that tissue anisotropy may be responsible for this scattering reduction. The present findings could be considered in order for the specialists to accurately specify the laser optical dose in various biomedical applications.


Subject(s)
Infrared Rays , Lasers , Optical Phenomena , Organ Specificity , Animals , Anisotropy , Computer Simulation , Finite Element Analysis , Male , Monte Carlo Method , Organ Specificity/radiation effects , ROC Curve , Rats, Wistar , Scattering, Radiation
17.
Lasers Med Sci ; 37(3): 1615-1623, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34487275

ABSTRACT

The present study aimed at investigating the antidepressant and antioxidant actions of near-infrared (NIR) laser at a wavelength of 830 nm and power of 100 mW which applied transcranially on an animal model of depression induced by repeated doses of reserpine (0.2 mg/kg). Thirty male Wistar adult rats were divided into three groups: rat model of depression; rat model of depression irradiated with laser for 14 days after induction of depression; and the control group that was given the drug vehicle and sham-exposed to the laser. Forced swimming test (FST) was used to verify the induction of animal model of depression and to screen the effect of antidepressant effect of low-level laser at the end of the experiment. Monoamine level, oxidative stress markers, and activities of acetylcholinesterase (AchE) and monoamine oxidase (MAO) were determined in the cortex and hippocampus of the rat brain. Reserpine resulted in depletion of monoamines and elevation in the oxidative stress markers and change in the enzymatic activities measured in both brain areas. Laser irradiation has an inhibitory action on the monoamine oxidase (MAO) in the cortex and hippocampus leading to elevation of the monoamine levels and attenuation of the oxidative stress in the studied areas. FST has emphasized the antidepressant effect of the utilized laser irradiation parameters on the behavioral level. The present findings provide evidence for the antidepressant and antioxidant actions of NIR low-power laser in the rat model of depression. Accordingly, low-laser irradiation may be presented as a potential candidate modality for depression treatment.


Subject(s)
Antioxidants , Depression , Acetylcholinesterase , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antioxidants/pharmacology , Behavior, Animal , Depression/drug therapy , Disease Models, Animal , Lasers , Male , Rats , Rats, Wistar , Swimming
18.
Biomed Tech (Berl) ; 66(6): 563-572, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34384008

ABSTRACT

Seizures, the main symptom of epilepsy, are provoked due to a neurological disorder that underlies the disease. The accurate detection of seizures is a crucial step in any procedure of treatment. In the present study, electrocorticogram (ECoG) signals were recorded from awake and freely moving animals implanted with cortical electrodes before and after pentylenetetrazol, the chemo-convulsant injection. ECoG signals were segmented into 4-s epochs and labeled. Twenty-four linear and non-linear features were extracted from the time and frequency domains of the ECoG signals. The extracted features either individually or in combinations were fed to an automatic support vector machine (SVM) classification system. SVM classifier was trained with 5 min of ictal and non-ictal labeled ECoG signals to build the hyperplane that separates two sets of training signals. Sensitivity, specificity, and accuracy were determined for the testing dataset using the different feature combinations. It has been found that some linear features either individually or in combinations outperform non-linear features in terms of the accuracy for seizure detection. The maximum accuracy achieved by the system was 95.3% and has been obtained only after linear and non-linear features were combined. ECoG signals were classified without pre-processing or removal of artifacts to reduce the required computational time to be suitable for online implementation purposes. This may prove the detection system's robustness and supports its use in online seizure detection protocols.


Subject(s)
Epilepsy , Support Vector Machine , Algorithms , Animals , Electroencephalography , Epilepsy/diagnosis , Rats , Seizures/diagnosis , Signal Processing, Computer-Assisted
19.
Eur J Pharmacol ; 908: 174384, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34324858

ABSTRACT

The antidepressant effect of curcumin-coated iron oxide nanoparticles (Cur-IONPs) was investigated in the current study using depression rat model induced by reserpine. IONPs were synthesized by curcumin as a reducing agent producing Cur-IONPs. Rats were divided into control, depression rat model, and depressed rats treated with Cur-IONPs. After treatment rat behavior was evaluated using forced swimming test (FST). Serotonin (5-HT), norepinephrine (NE), dopamine (DA), monoamine oxidase (MAO), acetylcholinesterase (AchE), Na+, K+, ATPase, lipid peroxidation (MDA), reduced glutathione (GSH), glutathione-s-transferase (GST) and nitric oxide (NO) were measured in the cortex and hippocampus. In depressed rats, FST showed increased immobilization time and reduced swimming time. This was associated with a significant decrease in 5-HT, NE, DA and GSH and a significant increase in MDA and NO levels and GST, MAO, AchE and Na+, K+, ATPase activities in the cortex and hippocampus. Treatment with Cur-NONPs for two weeks increased the swimming time reduced the immobility time, and elevated 5-HT, NE and DA levels. Cur-IONPs attenuated the oxidative stress induced by reserpine and restored the MAO, AchE and Na+, K+, ATPase. The present green method used curcumin in the IONPs synthesis and has several merits; obtaining nanoform of iron oxide, increasing the bioavailability of curcumin and reducing the oxidative stress induced by iron. The present antidepressant effect of Cur-IONPs could be attributed to the ability of Cur-IONPs to restore monoamine neurotransmitter levels by increasing their synthesis and reducing their metabolism. In addition, the antioxidant activity of curcumin prevented oxidative stress in the depressed rats.


Subject(s)
Acetylcholinesterase , Curcumin , Animals , Antidepressive Agents , Depression , Lipid Peroxidation , Rats
20.
Neurotoxicology ; 85: 1-9, 2021 07.
Article in English | MEDLINE | ID: mdl-33882267

ABSTRACT

Cognitive impairment is one of the serious side effects that cancer-treated patients suffer from after treatment by doxorubicin (DOX). Investigating the mechanisms underlying this impairment is crucial for its treatment or prevention. The current study investigates the cortical and hippocampal neurochemical changes induced by an acute dose of DOX (20 mg/kg, i.p.) and evaluates the neuroprotective effect of nanocurcumin (NC) (50 mg/kg, p.o.) against these changes. Animals were randomly divided into four groups, control, rats treated with either NC or DOX, and the fourth group treated with NC prior to DOX. Cortical dopamine level has significantly increased (71.88 %) after DOX injection. This was associated with a significant rise in the levels of lipid peroxidation (183.99 %, 201.4 %) and nitric oxide (36.54 %, 55 %) and a significant reduction in reduced glutathione (13 %, 21.44 %) in the cortex and hippocampus, respectively. In addition, DOX inhibited the cortical and hippocampal activities of acetylcholinesterase (94.82 %, 62.75 %) and monoamine oxidase (64.40 %, 68.84 %), respectively. Protection with NC mitigates the changes induced in the oxidative stress parameters by DOX. However, the effect on the activities of AchE and MAO was insignificant. This was reflected in the level of dopamine that showed non-significant changes in comparison to control and DOX-treated rats. The present findings indicate that oxidative stress, inhibition in AchE, MAO, and the subsequent elevation in dopamine could have a crucial role in mediating the chemo-brain adverse effects induced by DOX. In addition, protection with NC mitigated some of these adverse effects thus rendering DOX more tolerable.


Subject(s)
Brain/drug effects , Curcumin/administration & dosage , Doxorubicin/toxicity , Nanoparticles/administration & dosage , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antibiotics, Antineoplastic/toxicity , Brain/metabolism , Dopamine/metabolism , Male , Oxidative Stress/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...