Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 18(1): 99-114, 2019 01.
Article in English | MEDLINE | ID: mdl-30293061

ABSTRACT

The parasitoid emerald jewel wasp Ampulex compressa induces a compliant state of hypokinesia in its host, the American cockroach Periplaneta americana through direct envenomation of the central nervous system (CNS). To elucidate the biochemical strategy underlying venom-induced hypokinesia, we subjected the venom apparatus and milked venom to RNAseq and proteomics analyses to construct a comprehensive "venome," consisting of 264 proteins. Abundant in the venome are enzymes endogenous to the host brain, including M13 family metalloproteases, phospholipases, adenosine deaminase, hyaluronidase, and neuropeptide precursors. The amphipathic, alpha-helical ampulexins are among the most abundant venom components. Also prominent are members of the Toll/NF-κB signaling pathway, including proteases Persephone, Snake, Easter, and the Toll receptor ligand Spätzle. We find evidence that venom components are processed following envenomation. The acidic (pH∼4) venom contains unprocessed neuropeptide tachykinin and corazonin precursors and is conspicuously devoid of the corresponding processed, biologically active peptides. Neutralization of venom leads to appearance of mature tachykinin and corazonin, suggesting that the wasp employs precursors as a prolonged time-release strategy within the host brain post-envenomation. Injection of fully processed tachykinin into host cephalic ganglia elicits short-term hypokinesia. Ion channel modifiers and cytolytic toxins are absent in A. compressa venom, which appears to hijack control of the host brain by introducing a "storm" of its own neurochemicals. Our findings deepen understanding of the chemical warfare underlying host-parasitoid interactions and in particular neuromodulatory mechanisms that enable manipulation of host behavior to suit the nutritional needs of opportunistic parasitoid progeny.


Subject(s)
Cockroaches/parasitology , Insect Proteins/metabolism , Wasp Venoms/metabolism , Animals , Brain/metabolism , Brain/parasitology , Cockroaches/metabolism , Female , Gene Expression Profiling/methods , Host-Parasite Interactions , Insect Proteins/genetics , Male , Proteomics/methods , Sequence Analysis, RNA , Wasp Venoms/genetics
2.
Biochemistry ; 57(12): 1907-1916, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29350905

ABSTRACT

The parasitoid wasp Ampulex compressa injects venom directly into the brain and subesophageal ganglion of the cockroach Periplaneta americana, inducing a 7 to 10 day lethargy termed hypokinesia. Hypokinesia presents as a significant reduction in both escape response and spontaneous walking. We examined aminergic and peptidergic components of milked venom with HPLC and MALDI-TOF mass spectrometry. HPLC coupled with electrochemical detection confirmed the presence of dopamine in milked venom, while mass spectrometry revealed that the venom gland and venom sac have distinct peptide profiles, with milked venom predominantly composed of venom sac peptides. We isolated and characterized novel α-helical, amphipathic venom sac peptides that constitute a new family of venom toxins termed ampulexins. Injection of the most abundant venom peptide, ampulexin 1, into the subesophageal ganglion of cockroaches resulted in a short-term increase in escape threshold. Neither milked venom nor venom peptides interfered with growth of Escherichia coli or Bacillus thuringiensis on agar plates, and exposure to ampulexins or milked venom did not induce cell death in Chinese hamster ovary cells (CHO-K1) or Hi5 cells ( Trichoplusia ni).


Subject(s)
Insect Proteins/chemistry , Peptides/chemistry , Wasp Venoms/chemistry , Wasps/chemistry , Animals , Insect Proteins/pharmacology , Peptides/pharmacology , Periplaneta , Wasp Venoms/pharmacology
3.
Ann Trop Paediatr ; 22(2): 191-5, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12070957

ABSTRACT

We report a full-term baby boy who presented soon after birth with severe congenital rickets. Maternal and neonatal vitamin D levels were very low and the infant responded well to oral vitamin D. Transient secondary hyperparathyroidism normalised on treatment. The mother's vitamin D deficiency was attributed to the region's cultural dress code which prevents exposure to sunlight. There has not been a previous report of severe congenital rickets from this region.


Subject(s)
Pregnancy Complications , Prenatal Exposure Delayed Effects , Rickets/congenital , Vitamin D Deficiency , Adult , Female , Humans , Infant, Newborn , Male , Pregnancy , Radiography , Rickets/diagnostic imaging , Rickets/etiology
SELECTION OF CITATIONS
SEARCH DETAIL