Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Viral Immunol ; 37(2): 89-100, 2024 03.
Article in English | MEDLINE | ID: mdl-38301195

ABSTRACT

Herpesvirus of turkey (HVT) increases activation of T cells in 1-day-old chickens when administered in ovo. This study evaluated whether adding cytosine-guanosine oligodeoxynucleotides (CpG ODNs) to the HVT vaccine could enhance the adjuvant effect of HVT. We used a CpG ODN dose of 10 µg per egg. The experimental groups were (1) diluent-only control (sham), (2) HVT, (3) HVT+CpG ODN, (4) HVT+non-CpG ODN, (5) CpG ODN, and (6) non-CpG ODN control. Cellular response evaluation included measuring the frequencies of macrophages (KUL01+MHC-II+), gamma delta T cells (γδTCR+MHC-II+), CD4+, and CD8+ T cell subsets, including double-positive (DP) cells. In addition, CD4+ and CD8+ T cell activation was evaluated by measuring the cellular expression of major histocompatibility complex class II (MHC-II), CD44 or CD28 costimulatory molecules. An adjuvant effect was considered when HVT+CpG ODN, but not HVT+non CpG ODN, or CpG ODN, or non-CpG ODN, induced significantly increased effects on any of the immune parameters examined when compared with HVT. The findings showed that (1) HVT vaccination induced significantly higher frequencies of γδ+MHC-II+ and CD4+CD28+ T cells when compared with sham chickens. Frequencies of DP and CD4+CD28+ T cells in HVT-administered birds were significantly higher than those observed in the non-CpG ODN group. (2) Groups receiving HVT+CpG ODN or CpG ODN alone were found to have significantly increased frequencies of activated CD4+ and CD8+ T cells, when compared with HVT. Our results show that CpG ODN administration in ovo with or without HVT significantly increased frequencies of activated CD4+ and CD8+ T cells.


Subject(s)
Herpesviridae , Vaccines , Animals , Chickens , CD8-Positive T-Lymphocytes , CD28 Antigens , Adjuvants, Immunologic , Oligodeoxyribonucleotides , Meat
2.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37904914

ABSTRACT

Control of the electrochemical environment in living cells is typically attributed to ion channels. Here we show that the formation of biomolecular condensates can modulate the electrochemical environment in cells, which affects processes globally within the cell and interactions of the cell with its environment. Condensate formation results in the depletion or enrichment of certain ions, generating intracellular ion gradients. These gradients directly affect the electrochemical properties of a cell, including the cytoplasmic pH and hyperpolarization of the membrane potential. The modulation of the electrochemical equilibria between the intra- and extra-cellular environments by biomolecular condensates governs charge-dependent uptake of small molecules by cells, and thereby directly influences bacterial survival under antibiotic stress. The shift of the intracellular electrochemical equilibria by condensate formation also drives a global change of the gene expression profile. The control of the cytoplasmic environment by condensates is correlated with their volume fraction, which can be highly variable between cells due to the stochastic nature of gene expression at the single cell level. Thus, condensate formation can amplify cell-cell variability of the environmental effects induced by the shift of cellular electrochemical equilibria. Our work reveals new biochemical functions of condensates, which extend beyond the biomolecules driving and participating in condensate formation, and uncovers a new role of biomolecular condensates in cellular regulation.

3.
Avian Dis ; 67(2): 186-196, 2023 06.
Article in English | MEDLINE | ID: mdl-37556298

ABSTRACT

Host cellular responses against Clostridium perfringens (CP), the causative agent of necrotic enteritis (NE) in chickens, are poorly understood. In the present study, we first tested the NE-producing ability of seven netB+ CP strains (CP5, CP18, CP26, CP64, CP67, CP68, and NCNE-1), using an experimental infection model of broiler chickens. Evaluation of intestinal gross lesions showed that all the strains, except CP5, were able to produce NE, while CP26 and CP64 strains produced relatively more severe lesions when compared with other groups. Next, cellular responses in the cecal tonsil (CT), bursa of Fabricius, and spleen were evaluated in chickens infected with strains representing variation in the level of virulence, namely, avirulent CP5, virulent CP18, and a relatively more virulent CP26 strain. Immunophenotyping analysis showed that CT or splenic macrophage frequencies were significantly higher in CP18- and CP26-infected chickens compared with uninfected controls, while the frequencies of γδ T-cells and B-cells in the CT of CP26-infected chickens were significantly higher than those in the uninfected, CP5- or CP18-infected groups. The T-cell analysis showed that chickens infected with CP18 and CP26 had a significantly higher number of splenic CD4+ and CD8+ T-cells expressing CD44 and CD28 activation molecules, while CP26-infected chickens also had significantly increased CT frequency of these activated CD4+ and CD8+ T-cells when compared with uninfected or CP5-infected groups. Collectively, our findings suggested that cellular responses, including activation of T-cells, are selectively induced against virulent CP strains and that the NE-producing characteristics of this pathogen may influence the outcome of immunity to NE.


Respuestas inmunes celulares en tejidos linfoides de pollos de engorde infectados experimentalmente con cepas de Clostridium perfringens productoras de enteritis necrótica. Las respuestas celulares del huésped contra Clostridium perfringens (CP), el agente causante de la enteritis necrótica (NE) en pollos, son poco conocidas. En el presente estudio, primero se analizó la capacidad de producción de enteritis necrótica de siete cepas de C. perfringens netB+ (CP5, CP18, CP26, CP64, CP67, CP68 y NCNE-1), utilizando un modelo de infección experimental de pollos de engorde. La evaluación de las lesiones macroscópicas intestinales mostró que todas las cepas, excepto CP5, podían producir enteritis necrótica, mientras que las cepas CP26 y CP64 produjeron lesiones relativamente más severas en comparación con los otros grupos. Posteriormente, se evaluaron las respuestas celulares en las tonsilas cecales (CT), la bolsa de Fabricio y en el bazo de pollos infectados con cepas que representan variaciones en el nivel de virulencia, por ejemplo las cepas CP5 avirulenta, CP18 virulenta y la cepa CP26 relativamente más virulenta. El análisis de inmunofenotipado mostró que las frecuencias de los macrófagos esplénicos o de las tonsilas cecales fueron significativamente más altas en los pollos infectados con las cepas CP18 y CP26 en comparación con los controles no infectados, mientras que las frecuencias de células T γd y células B en tonsilas cecales de los pollos infectados con la cepa CP26 fueron significativamente más altas que las de los pollos de los grupos no infectados, o infectados con las cepas CP5 o CP18. El análisis de células T mostró que los pollos infectados con las cepas CP18 y CP26 tenían un número significativamente mayor de células esplénicas T CD4+ y CD8+ que expresaban moléculas de activación CD44 y CD28, mientras que los pollos infectados con la cepa CP26 también tenían una frecuencia significativamente mayor en las tonsilas cecales de estas células T CD4+ y CD8+ activadas en comparación con grupos no infectados o infectados con la cepa CP5. En conjunto, estos hallazgos sugirieron que las respuestas celulares, incluida la activación de las células T, se inducen selectivamente contra las cepas virulentas de C. perfringens y que las características productoras de enteritis necrótica de este patógeno pueden influir en el resultado de la inmunidad contra la enteritis necrótica.


Subject(s)
Clostridium Infections , Enteritis , Poultry Diseases , Animals , Clostridium perfringens/physiology , Clostridium Infections/veterinary , Clostridium Infections/pathology , Chickens , CD8-Positive T-Lymphocytes/pathology , Enteritis/veterinary , Enteritis/pathology , Poultry Diseases/pathology , Lymphoid Tissue/pathology , Immunity, Cellular , Necrosis/veterinary
4.
Nat Chem Biol ; 19(4): 518-528, 2023 04.
Article in English | MEDLINE | ID: mdl-36747054

ABSTRACT

The formation of biomolecular condensates mediated by a coupling of associative and segregative phase transitions plays a critical role in controlling diverse cellular functions in nature. This has inspired the use of phase transitions to design synthetic systems. While design rules of phase transitions have been established for many synthetic intrinsically disordered proteins, most efforts have focused on investigating their phase behaviors in a test tube. Here, we present a rational engineering approach to program the formation and physical properties of synthetic condensates to achieve intended cellular functions. We demonstrate this approach through targeted plasmid sequestration and transcription regulation in bacteria and modulation of a protein circuit in mammalian cells. Our approach lays the foundation for engineering designer condensates for synthetic biology applications.


Subject(s)
Biomolecular Condensates , Intrinsically Disordered Proteins , Animals , Organelles/metabolism , Intrinsically Disordered Proteins/metabolism , Mammals
5.
Vet Dermatol ; 34(2): 107-114, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36482868

ABSTRACT

BACKGROUND: Atopic dogs often are managed with allergen-specific immunotherapy (AIT) and concurrent dosages of ciclosporin (CSA) or oclacitinib to alleviate their clinical signs. Both drugs might affect proper tolerance induction by inhibiting regulatory T-cell (Treg) induction. HYPOTHESIS/OBJECTIVES: We evaluated Treg cell numbers and serum interleukin (IL)-10 and transforming growth factor-beta (TGF-ß)1 levels in dogs diagnosed with atopic dermatitis (AD) and successfully treated with either CSA or oclacitinib for nine or more months. ANIMALS: We included 15 dogs receiving oclacitinib, 14 dogs treated with CSA, 15 healthy dogs, 13 dogs with untreated moderate-to-severe AD and 15 atopic dogs controlled with AIT. MATERIALS AND METHODS: Peripheral blood CD4+CD25+FOXP3+ T-cell percentages were determined using flow cytometry. Serum concentrations of IL-10 and TGF-ß1 were measured by enzyme-linked immunosorbent assay. RESULTS: The percentage of Treg cells in the CSA group was significantly lower in comparison with the healthy group (p = 0.0003), the nontreated AD group (p = 0.0056) or the AIT group (p = 0.0186). There was no significant difference in Treg cell percentages between the CSA and oclacitinib groups, nor between the oclacitinib and the healthy, nontreated AD or AIT-treated dogs. No significant differences were detected in IL-10 and TGF-ß1 serum concentrations between the five groups. CONCLUSIONS AND CLINICAL RELEVANCE: Lower Treg cell percentages in the CSA-treated dogs suggest an impact of this drug on this cell population; however, it does not necessarily mean that it diminishes tolerance. Functionality and cytokine production may be more important than the number of Treg cells. Further studies evaluating the treatment outcome of dogs receiving AIT and concurrent drugs are needed to show clinical relevance.


Subject(s)
Dermatitis, Atopic , Dog Diseases , Dogs , Animals , Cyclosporine/therapeutic use , T-Lymphocytes, Regulatory , Interleukin-10 , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/veterinary , Transforming Growth Factor beta1/therapeutic use , Transforming Growth Factor beta/therapeutic use , Immune Tolerance , Dog Diseases/drug therapy
6.
Vaccine ; 40(28): 3893-3902, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35623907

ABSTRACT

Coccidiosis, caused by Eimeria protozoan species, is an economically important enteric disease of poultry. Although commercial live vaccines are widely used for disease control, the vaccine-induced protective immune mechanisms are poorly characterized. The present study used a commercial broiler vaccine containing a mixture of E. acervulina, E. maxima, and E. tenella. One-day-old chicks were vaccinated by spray followed by a challenge at 21 days of age with a mixture of wild type Eimeria species via oral gavage. Oocyst shedding, immune gene expression and cellular responses in the spleen and cecal tonsils were measured at pre- (days 14 and 21) and post-challenge (days 24, 28 and 35) time points. Results showed that the oocyst counts were significantly reduced in the vaccinated chickens at post-challenge compared to unvaccinated control group. While the vaccinated birds had a significantly increased toll-like receptor (TLR) 21 gene expression at pre-challenge, the transcription of interferon (IFN)γ, Interleukin (IL)-12 and CD40 genes in spleen and cecal tonsils of these birds was significantly higher at post-challenge compared to unvaccinated chickens. Cellular immunophenotyping analysis found that vaccination led to increased frequency of macrophages and activated T cells (CD8+CD44+ and CD4+CD44+) in the spleen and cecal tonsils at post-challenge. Furthermore, in vitro stimulation of chicken macrophages (MQ-NCSU cells) with purified individual species of E. acervulina, E. maxima, and E. tenella showed a significantly increased expression of TLR21, TLR2 and IFNγ genes as well as nitric oxide production. Collectively, these findings suggest that TLR21 and TLR2 may be involved in the immune cell recognition of Eimeria parasites and that the vaccine can induce a robust macrophage activation leading to a T helper-1 dominated protective response at both local and systemic lymphoid tissues.


Subject(s)
Coccidiosis , Eimeria tenella , Eimeria , Poultry Diseases , Protozoan Vaccines , Animals , Chickens , Coccidiosis/prevention & control , Coccidiosis/veterinary , Immunity , Oocysts , Toll-Like Receptor 2
7.
Pathogens ; 11(1)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35056048

ABSTRACT

The present study evaluated the avian macrophage responses against Clostridium perfringens that varied in their ability to cause necrotic enteritis in chickens. Strains CP5 (avirulent-netB+), CP1 (virulent-netB+), and CP26 (highly virulent-netB+tpeL+) were used to evaluate their effect on macrophages (MQ-NCSU cells) and primary splenic and cecal tonsil mononuclear cells. The bacilli (whole cells) or their secretory products from all three strains induced a significant increase in the macrophage transcription of Toll-like receptor (TLR)21, TLR2, interleukin (IL)-1ß, inducible nitric oxide synthase (iNOS), and CD80 genes as well as their nitric oxide (NO) production and major histocompatibility complex (MHC)-II surface expression compared to an unstimulated control. The CP1 and CP26-induced expression of interferon (IFN)γ, IL-6, CD40 genes, MHC-II upregulation, and NO production was significantly higher than that of CP5 and control groups. Furthermore, splenocytes and cecal tonsillocytes stimulated with bacilli or secretory products from all the strains showed a significant increase in the frequency of macrophages, their surface expression of MHC-II and NO production, while CP26-induced responses were significantly higher for the rest of the groups. In summary, macrophage interaction with C. perfringens can lead to cellular activation and, the ability of this pathogen to induce macrophage responses may depend on its level of virulence.

8.
Poult Sci ; 101(3): 101652, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35038649

ABSTRACT

Clostridium perfringens-induced necrotic enteritis (NE) is an economically important disease of broiler chickens. The present study evaluated the effect of C. perfringens on the intestinal histomorphometry, enteric microbial colonization, and host immune responses using 3 experimental NE reproduction methods. The experimental groups consisted of 1) unchallenged Control diet (corn-soybean meal), 2) Control diet + Eimera inoculation at d 11 followed by C. perfringens challenge at d 15 (ECp), 3) Wheat-based diet + C. perfringens challenge (WCp), and 4) Wheat-based diet + Eimeria inoculation followed by C. perfringens challenge (WECp). The results showed that chickens receiving ECp and WECp had reduced (P < 0.05) bird performance coupled with enteric gross lesions and epithelial damage at d 17 and 24 of age compared to unchallenged control birds. These ECp and WECp administered birds also had increased (P < 0.05) ileal colonization by clostridia and E. coli at d 17 and 24, while the resident Lactobacillus counts were reduced (P < 0.05) at d 24 of age. Furthermore, at d 24, jejunal transcription of IL-6, IL-10, annexin-A1 and IL-2 genes was upregulated (P < 0.05) in the ECp group, whereas the transcription of TNF receptor associated factor (TRAF)-3 gene was increased (P < 0.05) in WECp treated birds when compared to unchallenged control group. Additionally, stimulation of chicken splenocytes and cecal tonsilocytes with virulent C. perfringens bacilli or their secretory proteins resulted in a higher (P < 0.05) frequency of T cells and their upregulation of MHC-II molecule, as determined by flow cytometry. These findings suggest that C. perfringens, while inducing epithelial damage and changes in microbiota, can also trigger host immune responses. Furthermore, NE reproduction methods using coccidia with or without the wheat-based dietary predisposition seem to facilitate an optimal NE reproduction in broiler chickens and thus, may provide better avenues for future C. perfringens research.


Subject(s)
Clostridium Infections , Enteritis , Poultry Diseases , Animals , Chickens , Clostridium Infections/pathology , Clostridium Infections/veterinary , Clostridium perfringens/physiology , Diet/veterinary , Enteritis/pathology , Enteritis/veterinary , Escherichia coli , Immunity , Necrosis/veterinary
9.
Vet Parasitol ; 301: 109634, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864364

ABSTRACT

Production losses, mortality, and control measures associated with coccidiosis, caused by Eimera species, cost the broiler industry over $14 billion a year. Current means to distinguish Eimeria species such as oocyst morphology, pre-patent period and site of infection are subjective, labor intensive or unsuitable for high-throughput applications. Although Polymerase Chain Reaction (PCR) techniques have been validated, the target gene cannot differentiate relative abundance of each species in mixed infections. In this study, we developed a non-antibody-based flow cytometry high throughput method to simultaneously enumerate and speciate four Eimeria species, E. acervulina, E. mitis, E. maxima, and E. tenella, using commercial coccidia vaccine as well as field fecal samples. Our findings showed that the four Eimeria oocyst populations could be distinctly speciated based on their size and granularity (shape) via scatter plotting. These distinct populations were sorted and confirmed by quantitative real-time PCR assay. Finally, the flow cytometry findings were applied to enumerate and speciate oocysts from fecal samples collected from commercial broiler flocks vaccinated for coccidiosis at day of hatch and the results were validated against the conventional manual method of floatation and microscopic examination. Collectively, the findings of this study suggested that non-antibody based Flow Cytometry technique can be successful in the simultaneous enumeration and speciation of coccidia. Further development and validation is needed to make this diagnostic tool useful for field applications at a much larger scale as well as to speciate other Eimeria species.


Subject(s)
Coccidiosis , Eimeria , Poultry Diseases , Animals , Chickens , Coccidiosis/veterinary , Eimeria/genetics , Flow Cytometry/veterinary , Real-Time Polymerase Chain Reaction/veterinary
10.
PLoS Genet ; 15(6): e1008178, 2019 06.
Article in English | MEDLINE | ID: mdl-31199784

ABSTRACT

Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-ß mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.


Subject(s)
Antigens, CD/genetics , Antigens, Ly/genetics , Diabetes Mellitus, Type 1/genetics , Pancreas/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Diabetes Mellitus, Type 1/pathology , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Haplotypes/genetics , Humans , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Mice, Inbred NOD , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pancreas/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
11.
J Immunol ; 187(11): 5805-12, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22058413

ABSTRACT

Complement, NKT, and NK cells play critical roles in the first line defense against pathogens. Functional roles for both C5a receptors, that is, complement receptor C5a (C5aR) and C5a receptor-like 2 (C5L2), in sepsis have been demonstrated. However, the role of C5a in innate lymphocyte activation during sepsis remains elusive. In this article, we show that naive NKT and NK cells already express high levels of C5aR and minor levels of C5L2 mRNA, but no protein. Upon Escherichia coli-induced sepsis, we found C5aR surface expression on subpopulations of NKT and NK cells, suggesting rapid translation into C5aR protein on bacterial encounter. Importantly, significantly increased survival in the absence of C5aR, NKT, and NK cells, but not of C5L2, was associated with reduced IFN-γ and TNF-α serum levels. Sepsis induction in C5aR(+)/C5aR(-) mixed bone marrow chimeras identified cognate engagement of C5aR on NKT cells as an important factor for the recruitment of NKT cells. Furthermore, we found synergistic interaction between C5aR and TLRs enhancing the production of TNF-α and IFN-γ from NKT and NK cells in cocultures with dendritic cells. Our results identify C5aR activation as a novel pathway driving detrimental effects of NKT and NK cells during early experimental sepsis.


Subject(s)
Complement C5a/immunology , Killer Cells, Natural/immunology , Natural Killer T-Cells/immunology , Sepsis/immunology , Animals , Cell Separation , Complement C5a/metabolism , Flow Cytometry , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Natural Killer T-Cells/metabolism , Real-Time Polymerase Chain Reaction , Receptor, Anaphylatoxin C5a/immunology , Receptor, Anaphylatoxin C5a/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sepsis/metabolism
12.
J Immunol ; 187(1): 325-36, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21613616

ABSTRACT

We have previously proposed that sequence variation of the CD101 gene between NOD and C57BL/6 mice accounts for the protection from type 1 diabetes (T1D) provided by the insulin-dependent diabetes susceptibility region 10 (Idd10), a <1 Mb region on mouse chromosome 3. In this study, we provide further support for the hypothesis that Cd101 is Idd10 using haplotype and expression analyses of novel Idd10 congenic strains coupled to the development of a CD101 knockout mouse. Susceptibility to T1D was correlated with genotype-dependent CD101 expression on multiple cell subsets, including Foxp3(+) regulatory CD4(+) T cells, CD11c(+) dendritic cells, and Gr1(+) myeloid cells. The correlation of CD101 expression on immune cells from four independent Idd10 haplotypes with the development of T1D supports the identity of Cd101 as Idd10. Because CD101 has been associated with regulatory T and Ag presentation cell functions, our results provide a further link between immune regulation and susceptibility to T1D.


Subject(s)
Antigens, CD/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Animals , Antigens, CD/biosynthesis , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Genetic Predisposition to Disease , Genotype , Haplotypes , Mice , Mice, Congenic , Mice, Inbred A , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Molecular Sequence Data
13.
J Immunol ; 187(1): 337-49, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21613619

ABSTRACT

Environmental and genetic factors define the susceptibility of an individual to autoimmune disease. Although common genetic pathways affect general immunological tolerance mechanisms in autoimmunity, the effects of such genes could vary under distinct immune challenges within different tissues. In this study, we demonstrate this by observing that autoimmune type 1 diabetes-protective haplotypes at the insulin-dependent diabetes susceptibility region 10 (Idd10) introgressed from chromosome 3 of C57BL/6 (B6) and A/J mice onto the NOD background increase the severity of autoimmune primary biliary cirrhosis induced by infection with Novosphingobium aromaticivorans, a ubiquitous alphaproteobacterium, when compared with mice having the NOD and NOD.CAST Idd10 type 1 diabetes-susceptible haplotypes. Substantially increased liver pathology in mice having the B6 and A/J Idd10 haplotypes correlates with reduced expression of CD101 on dendritic cells, macrophages, and granulocytes following infection, delayed clearance of N. aromaticivorans, and the promotion of overzealous IFN-γ- and IL-17-dominated T cell responses essential for the adoptive transfer of liver lesions. CD101-knockout mice generated on the B6 background also exhibit substantially more severe N. aromaticivorans-induced liver disease correlating with increased IFN-γ and IL-17 responses compared with wild-type mice. These data strongly support the hypothesis that allelic variation of the Cd101 gene, located in the Idd10 region, alters the severity of liver autoimmunity induced by N. aromaticivorans.


Subject(s)
Antigens, CD/genetics , Genetic Predisposition to Disease/genetics , Gram-Negative Bacterial Infections/immunology , Hepatitis, Autoimmune/immunology , Liver Cirrhosis, Biliary/immunology , Sphingomonadaceae/immunology , Animals , Antigens, CD/immunology , Female , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/pathology , Hepatitis, Autoimmune/genetics , Hepatitis, Autoimmune/microbiology , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, Transgenic , Severity of Illness Index
14.
Expert Rev Clin Immunol ; 5(4): 369-379, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-20161124

ABSTRACT

Despite having long been postulated, compelling evidence for the theory that microbial triggers drive autoimmunity has only recently been reported. A specific association between Novosphingobium aromaticivorans, an ubiquitous alphaproteobacterium, and primary biliary cirrhosis (PBC) has been uncovered in patients with PBC. Notably, the association between Novosphingobium infection and PBC has been confirmed in a mouse model in which infection leads to the development of liver lesions resembling PBC concomitant with the production of anti-PDC-E2 antibodies that cross-react with conserved PDC-E2 epitopes shared by Novosphingobium. The discovery of infectious triggers of autoimmunity is likely to change our current concepts about the etiology of various autoimmune syndromes and may suggest new and simpler ways to diagnose and treat these debilitating diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...