Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 716, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853038

ABSTRACT

Trypanosomiasis, a neglected tropical disease (NTD), challenges communities in sub-Saharan Africa and Latin America. The World Health Organization underscores the need for practical, field-adaptable diagnostics and rapid screening tools to address the negative impact of NTDs. While artificial intelligence has shown promising results in disease screening, the lack of curated datasets impedes progress. In response to this challenge, we developed the Tryp dataset, comprising microscopy images of unstained thick blood smears containing the Trypanosoma brucei brucei parasite. The Tryp dataset provides bounding box annotations for tightly enclosed regions containing the parasite for 3,085 positive images, and 93 images collected from negative blood samples. The Tryp dataset represents the largest of its kind. Furthermore, we provide a benchmark on three leading deep learning-based object detection techniques that demonstrate the feasibility of AI for this task. Overall, the availability of the Tryp dataset is expected to facilitate research advancements in diagnostic screening for this disease, which may lead to improved healthcare outcomes for the communities impacted.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Humans , Artificial Intelligence , Microscopy , Neglected Diseases , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/parasitology
2.
BMC Biomed Eng ; 3(1): 11, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34187589

ABSTRACT

BACKGROUND: Automating cytology-based cervical cancer screening could alleviate the shortage of skilled pathologists in developing countries. Up until now, computer vision experts have attempted numerous semi and fully automated approaches to address the need. Yet, these days, leveraging the astonishing accuracy and reproducibility of deep neural networks has become common among computer vision experts. In this regard, the purpose of this study is to classify single-cell Pap smear (cytology) images using pre-trained deep convolutional neural network (DCNN) image classifiers. We have fine-tuned the top ten pre-trained DCNN image classifiers and evaluated them using five class single-cell Pap smear images from SIPaKMeD dataset. The pre-trained DCNN image classifiers were selected from Keras Applications based on their top 1% accuracy. RESULTS: Our experimental result demonstrated that from the selected top-ten pre-trained DCNN image classifiers DenseNet169 outperformed with an average accuracy, precision, recall, and F1-score of 0.990, 0.974, 0.974, and 0.974, respectively. Moreover, it dashed the benchmark accuracy proposed by the creators of the dataset with 3.70%. CONCLUSIONS: Even though the size of DenseNet169 is small compared to the experimented pre-trained DCNN image classifiers, yet, it is not suitable for mobile or edge devices. Further experimentation with mobile or small-size DCNN image classifiers is required to extend the applicability of the models in real-world demands. In addition, since all experiments used the SIPaKMeD dataset, additional experiments will be needed using new datasets to enhance the generalizability of the models.

3.
BMC Biomed Eng ; 3(1): 4, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33641679

ABSTRACT

BACKGROUND: Liver cancer is the sixth most common cancer worldwide. It is mostly diagnosed with a computed tomography scan. Nowadays deep learning methods have been used for the segmentation of the liver and its tumor from the computed tomography (CT) scan images. This research mainly focused on segmenting liver and tumor from the abdominal CT scan images using a deep learning method and minimizing the effort and time used for a liver cancer diagnosis. The algorithm is based on the original UNet architecture. But, here in this paper, the numbers of filters on each convolutional block were reduced and new batch normalization and a dropout layer were added after each convolutional block of the contracting path. RESULTS: Using this algorithm a dice score of 0.96, 0.74, and 0.63 were obtained for liver segmentation, segmentation of tumors from the liver, and the segmentation of tumor from abdominal CT scan images respectively. The segmentation results of liver and tumor from the liver showed an improvement of 0.01 and 0.11 respectively from other works. CONCLUSION: This work proposed a liver and a tumor segmentation method using a UNet architecture as a baseline. Modification regarding the number of filters and network layers were done on the original UNet model to reduce the network complexity and improve segmentation performance. A new class balancing method is also introduced to minimize the class imbalance problem. Through these, the algorithm attained better segmentation results and showed good improvement. However, it faced difficulty in segmenting small and irregular tumors.

4.
Med Biol Eng Comput ; 59(1): 143-152, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33385284

ABSTRACT

Blood cell count provides relevant clinical information about different kinds of disorders. Any deviation in the number of blood cells implies the presence of infection, inflammation, edema, bleeding, and other blood-related issues. Current microscopic methods used for blood cell counting are very tedious and are highly prone to different sources of errors. Besides, these techniques do not provide full information related to blood cells like shape and size, which play important roles in the clinical investigation of serious blood-related diseases. In this paper, deep learning-based automatic classification and quantitative analysis of blood cells are proposed using the YOLOv2 model. The model was trained on 1560 images and 2703-labeled blood cells with different hyper-parameters. It was tested on 26 images containing 1454 red blood cells, 159 platelets, 3 basophils, 12 eosinophils, 24 lymphocytes, 13 monocytes, and 28 neutrophils. The network achieved detection and segmentation of blood cells with an average accuracy of 80.6% and a precision of 88.4%. Quantitative analysis of cells was done following classification, and mean accuracy of 92.96%, 91.96%, 88.736%, and 92.7% has been achieved in the measurement of area, aspect ratio, diameter, and counting of cells respectively.Graphical abstract Graphical abstract where the first picture shows the input image of blood cells seen under a compound light microscope. The second image shows the tools used like OpenCV to pre-process the image. The third image shows the convolutional neural network used to train and perform object detection. The 4th image shows the output of the network in the detection of blood cells. The last images indicate post-processing applied on the output image such as counting of each blood cells using the class label of each detection and quantification of morphological parameters like area, aspect ratio, and diameter of blood cells so that the final result provides the number of each blood cell types (seven) and morphological information providing valuable clinical information.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Blood Cells , Erythrocyte Count , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...