Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(9): eadk3074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416824

ABSTRACT

Cancer cells program fibroblasts into cancer associated fibroblasts (CAFs) in a two-step manner. First, cancer cells secrete exosomes to program quiescent fibroblasts into activated CAFs. Second, cancer cells maintain the CAF phenotype via activation of signal transduction pathways. We rationalized that inhibiting this two-step process can normalize CAFs into quiescent fibroblasts and augment the efficacy of immunotherapy. We show that cancer cell-targeted nanoliposomes that inhibit sequential steps of exosome biogenesis and release from lung cancer cells block the differentiation of lung fibroblasts into CAFs. In parallel, we demonstrate that CAF-targeted nanoliposomes that block two distinct nodes in fibroblast growth factor receptor (FGFR)-Wnt/ß-catenin signaling pathway can reverse activate CAFs into quiescent fibroblasts. Co-administration of both nanoliposomes significantly improves the infiltration of cytotoxic T cells and enhances the antitumor efficacy of αPD-L1 in immunocompetent lung cancer-bearing mice. Simultaneously blocking the tumoral exosome-mediated activation of fibroblasts and FGFR-Wnt/ß-catenin signaling constitutes a promising approach to augment immunotherapy.


Subject(s)
Exosomes , Lung Neoplasms , Animals , Mice , Exosomes/metabolism , Cell Proliferation/genetics , Fibroblasts/metabolism , Lung Neoplasms/genetics , Phenotype , Immunotherapy , Cell Line, Tumor
2.
Vaccines (Basel) ; 11(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38005987

ABSTRACT

The emergence of vaccine-evading SARS-CoV-2 variants urges the need for vaccines that elicit broadly neutralizing antibodies (bnAbs). Here, we assess covalently circularized nanodiscs decorated with recombinant SARS-CoV-2 spike glycoproteins from several variants for eliciting bnAbs with vaccination. Cobalt porphyrin-phospholipid (CoPoP) was incorporated into the nanodisc to allow for anchoring and functional orientation of spike trimers on the nanodisc surface through their His-tag. Monophosphoryl-lipid (MPLA) and QS-21 were incorporated as immunostimulatory adjuvants to enhance vaccine responses. Following optimization of nanodisc assembly, spike proteins were effectively displayed on the surface of the nanodiscs and maintained their conformational capacity for binding with human angiotensin-converting enzyme 2 (hACE2) as verified using electron microscopy and slot blot assay, respectively. Six different formulations were prepared where they contained mono antigens; four from the year 2020 (WT, Beta, Lambda, and Delta) and two from the year 2021 (Omicron BA.1 and BA.2). Additionally, we prepared a mosaic nanodisc displaying the four spike proteins from year 2020. Intramuscular vaccination of CD-1 female mice with the mosaic nanodisc induced antibody responses that not only neutralized matched pseudo-typed viruses, but also neutralized mismatched pseudo-typed viruses corresponding to later variants from year 2021 (Omicron BA.1 and BA.2). Interestingly, sera from mosaic-immunized mice did not effectively inhibit Omicron spike binding to human ACE-2, suggesting that some of the elicited antibodies were directed towards conserved neutralizing epitopes outside the receptor binding domain. Our results show that mosaic nanodisc vaccine displaying spike proteins from 2020 can elicit broadly neutralizing antibodies that can neutralize mismatched viruses from a following year, thus decreasing immune evasion of new emerging variants and enhancing healthcare preparedness.

3.
Front Immunol ; 13: 838985, 2022.
Article in English | MEDLINE | ID: mdl-35281011

ABSTRACT

Introduction: Studies have shown reduced antiviral responses in kidney transplant recipients (KTRs) following SARS-CoV-2 mRNA vaccination, but data on post-vaccination alloimmune responses and antiviral responses against the Delta (B.1.617.2) variant are limited. Materials and methods: To address this issue, we conducted a prospective, multi-center study of 58 adult KTRs receiving mRNA-BNT162b2 or mRNA-1273 vaccines. We used multiple complementary non-invasive biomarkers for rejection monitoring including serum creatinine, proteinuria, donor-derived cell-free DNA, peripheral blood gene expression profile (PBGEP), urinary CXCL9 mRNA and de novo donor-specific antibodies (DSA). Secondary outcomes included development of anti-viral immune responses against the wild-type and Delta variant of SARS-CoV-2. Results: At a median of 85 days, no KTRs developed de novo DSAs and only one patient developed acute rejection following recent conversion to belatacept, which was associated with increased creatinine and urinary CXCL9 levels. During follow-up, there were no significant changes in proteinuria, donor-derived cell-free DNA levels or PBGEP. 36% of KTRs in our cohort developed anti-wild-type spike antibodies, 75% and 55% of whom had neutralizing responses against wild-type and Delta variants respectively. A cellular response against wild-type S1, measured by interferon-γ-ELISpot assay, developed in 38% of KTRs. Cellular responses did not differ in KTRs with or without antibody responses. Conclusions: SARS-CoV-2 mRNA vaccination in KTRs did not elicit a significant alloimmune response. About half of KTRs who develop anti-wild-type spike antibodies after two mRNA vaccine doses have neutralizing responses against the Delta variant. There was no association between anti-viral humoral and cellular responses.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/immunology , Graft Rejection/diagnosis , Kidney Transplantation , Monitoring, Physiologic/methods , SARS-CoV-2/immunology , Aged , Antibodies, Viral/blood , Enzyme-Linked Immunospot Assay , Female , Humans , Immunity, Cellular , Isoantibodies/blood , Male , Middle Aged , Prospective Studies , Transplantation, Homologous , Vaccination
4.
Am J Transplant ; 21(5): 1893-1901, 2021 05.
Article in English | MEDLINE | ID: mdl-33421294

ABSTRACT

Following solid organ transplantation, a substantial proportion of chronic allograft loss is attributed to the formation of donor-specific antibodies (DSAs) and antibody-mediated rejection (AbMR). The frequency and phenotype of T follicular helper (Tfh) and T follicular regulatory (Tfr) cells is altered in the setting of kidney transplantation, particularly in patients who develop AbMR. However, the roles of Tfh and Tfr cells in AbMR after solid organ transplantation is unclear. We developed mouse models to inducibly and potently perturb Tfh and Tfr cells to assess the roles of these cells in the development of DSA and AbMR. We found that Tfh cells are required for both de novo DSA responses as well as augmentation of DSA following presensitization. Using orthotopic allogeneic kidney transplantation models, we found that deletion of Tfh cells at the time of transplantation resulted in less severe transplant rejection. Furthermore, using inducible Tfr cell deletion strategies we found that Tfr cells inhibit de novo DSA formation but only have a minor role in controlling kidney transplant rejection. These studies demonstrate that Tfh cells promote, whereas Tfr cells inhibit, DSA to control rejection after kidney transplantation. Therefore, targeting these cells represent a new therapeutic strategy to prevent and treat AbMR.


Subject(s)
Kidney Transplantation , Organ Transplantation , Animals , Antibodies , Graft Rejection/etiology , Humans , Kidney Transplantation/adverse effects , Mice , Organ Transplantation/adverse effects , Tissue Donors
5.
Curr Opin Organ Transplant ; 25(1): 22-26, 2020 02.
Article in English | MEDLINE | ID: mdl-31789953

ABSTRACT

PURPOSE OF REVIEW: To summarize recent studies elucidating the roles of follicular T cells in controlling allospecific antibody responses and antibody-mediated rejection (AbMR). RECENT FINDINGS: The field of antibody regulation has provided an in depth identification of the T-cell subsets involved in regulation of antibody responses. In addition, tools have been developed to study these cells during disease. Over the past few years, these strategies have been implemented in the field of transplantation to study the roles of T cells in mediating pathogenic antibody responses. SUMMARY: AbMR is largely responsible for long-term graft failure after solid organ transplantation and is induced by allospecific antibodies. In vaccination and infection, antiboody responses are controlled by humoral immunoregulation in which T follicular helper (Tfh) cells promote, and T follicular regulatory (Tfr) cells inhibit, antibody responses. Recent studies have suggested multifaceted roles for follicular T-cell subsets in regulating allospecific antibody responses and AbMR during organ transplantation. In addition, we discuss research priorities for the field to help elucidate mechanisms used by these cells so that new targeted therapeutics can be developed to prevent AbMR in human organ transplantation.


Subject(s)
Isoantibodies/immunology , T-Lymphocytes, Regulatory/immunology , Humans
6.
Nat Immunol ; 20(10): 1360-1371, 2019 10.
Article in English | MEDLINE | ID: mdl-31477921

ABSTRACT

Follicular regulatory T (TFR) cells have specialized roles in modulating follicular helper T (TFH) cell activation of B cells. However, the precise role of TFR cells in controlling antibody responses to foreign antigens and autoantigens in vivo is still unclear due to a lack of specific tools. A TFR cell-deleter mouse was developed that selectively deletes TFR cells, facilitating temporal studies. TFR cells were found to regulate early, but not late, germinal center (GC) responses to control antigen-specific antibody and B cell memory. Deletion of TFR cells also resulted in increased self-reactive immunoglobulin (Ig) G and IgE. The increased IgE levels led us to interrogate the role of TFR cells in house dust mite models. TFR cells were found to control TFH13 cell-induced IgE. In vivo, loss of TFR cells increased house-dust-mite-specific IgE and lung inflammation. Thus, TFR cells control IgG and IgE responses to vaccines, allergens and autoantigens, and exert critical immunoregulatory functions before GC formation.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Hypersensitivity/immunology , Pneumonia/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, Dermatophagoides/immunology , Autoantigens/immunology , Clonal Deletion/genetics , Disease Models, Animal , Humans , Immune Tolerance , Immunity, Humoral , Immunoglobulin E/metabolism , Immunoglobulin G/metabolism , Immunologic Memory , Interleukin-13/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyroglyphidae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...