Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 78(4): 701-715, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38252792

ABSTRACT

Mountain ranges are hotspots of biodiversity. However, the mechanisms that generate biodiversity patterns in different mountainous regions and taxa are not apparent. The Western Ghats (WG) escarpment in India is a globally recognized biodiversity hotspot with high species richness and endemism. Most studies have either invoked paleoclimatic conditions or climatic stability in the southern WG refugium to explain this high diversity and endemism. However, the factors driving macroevolutionary change remain unexplored for most taxa. Here, we generated the most comprehensive dated phylogeny to date for ranoid frogs in the WG and tested the role of paleoclimatic events or climatic stability in influencing frog diversification. We found that the diversity of different ranoid frog clades in the WG either accumulated at a constant rate through time or underwent a decrease in speciation rates around 3-2.5 Ma during the Pleistocene glaciation cycles. We also find no significant difference in diversification rate estimates across elevational gradients and the three broad biogeographic zones in the WG (northern, central, and southern WG). However, time-for-speciation explained regional species richness within clades, wherein older lineages have more extant species diversity. Overall, we find that global paleoclimatic events have had little impact on WG frog diversification throughout most of its early history until the Quaternary and that the WG may have been climatically stable allowing lineages to accumulate and persist over evolutionary time.


Subject(s)
Biological Evolution , Genetic Speciation , Animals , Phylogeny , Anura/genetics , Biodiversity
2.
PeerJ ; 6: e5752, 2018.
Article in English | MEDLINE | ID: mdl-30324026

ABSTRACT

Limited gene flow between populations due to geographic distance, presence of barriers or inherent low dispersal ability leads to the formation of genetically structured populations. Strong population structure indicates lowered levels or absence of gene flow which might lead to inbreeding and loss of genetic capacity to recuperate from anthropogenic stress and natural calamities. Terrestrial reptiles are generally known to have low dispersal abilities and few studies have explored drivers of their population structure on continental islands, where both anthropogenic stress and natural calamities are relatively common. We investigated the population structure and drivers of diversification of the Andaman keelback (Xenochrophis tytleri), an endemic, terrestrial and freshwater snake species in the Andaman archipelago, a continental group of islands in the Bay of Bengal. Data was collected from 86 individuals from seven islands and 78 individuals were sequenced for the gene Nuclear Dehydrogenase subunit 4 to identify the number of populations and distribution of genetic diversity across populations. We found 11 haplotypes on seven islands and observed high genetic differentiation between seven populations defined island-wise (F ST = 0.82). We further tested the number of populations by incorporating spatial data into Bayesian Clustering Analysis (GENELAND) and identified six populations of the Andaman keelback. We tested for the influence of Isolation-by-distance on these populations. While the overall trend showed a positive correlation between geographic and genetic distance, a correlogram revealed that the positive correlation disappears beyond ∼20-40 km. We also tested for the presence of geographical barriers to gene flow using Monmonier's algorithm (SPADS), which identified five barriers to dispersal confirming that there are oceanic barriers to dispersal for some island populations of the Andaman keelback. As the Andaman Islands are arranged almost in a straight line from North to South, our data are insufficient to tease apart the roles of geographical distance and barriers to gene flow. We conclude that salt waters between near islands are weak barriers and as the geographical distance between islands increases, so does the strength of the barrier.

SELECTION OF CITATIONS
SEARCH DETAIL
...