Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 208: 111612, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396132

ABSTRACT

Water quality standards are essential for regulation of contaminants in marine environment. Seawater quality criteria (SWQC) for arsenic (As), cadmium (Cd) and lead (Pb) have not been developed for India. The aim of this study is to derive the SWQC for the metals based on Species Sensitivity Distribution (SSD). Eight species of sensitive marine organisms belonging to five phyla were assessed for their sensitivity to toxicity of As, Cd and Pb. Median effective concentrations (EC50) and Median Lethal Concentrations (LC50) were derived from the acute toxicity bio-assays. No Observed Effect Concentrations (NOEC), Lowest Observed Effect Concentrations (LOEC) and chronic values were derived from chronic toxicity bio-assays. Diatoms were more sensitive to As with 96 h EC50 of 0.1 mg/l and copepods were more sensitive to Cd and Pb with 96 h EC50 of 0.019 mg/l and 0.05 mg/l respectively. Estimated NOECs ranged from 4.87 to 21.55 µg/l of As, 1.0 to 120 µg/l of Cd and 5.67 to 91.67 µg/l of Pb. Similarly, chronic values (µg/l) were in the range of 6.71-26.1, 1.38-170, and 7.67-91.67 of As, Cd and Pb respectively. The Criterion Maximum Concentration (CMC), Criterion Continuous Concentration (CCC) and Predicted No Effect Concentration (PNEC) values were prescribed as SWQC. The CMC (µg/l) of 19, 1.7 and 17 for As, Cd, and Pb were derived respectively for acute exposure during accidental marine outfalls. The CCC (µg/l) for As was 4.6, 1.1 for Cd and 5.9 for Pb are recommended as SWQC for protection of 95% of marine organisms. PNEC (µg/l) of 3.8 for As, 0.92 for Cd and 4.3 for Pb are suggested for highly disturbed ecosystems, shell fishing and mariculture uses of water bodies. These values are recommended as a baseline for site specific water quality criteria for the coastal waters of the country.


Subject(s)
Aquatic Organisms/drug effects , Arsenic/toxicity , Cadmium/toxicity , Lead/toxicity , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Water Quality/standards , Animals , Arsenic/analysis , Cadmium/analysis , Copepoda/drug effects , Diatoms/drug effects , Ecosystem , India , Lead/analysis , Lethal Dose 50 , Species Specificity , Water Pollutants, Chemical/analysis
2.
Environ Sci Pollut Res Int ; 28(2): 1775-1788, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32856244

ABSTRACT

The southwest coast of India along the Cochin region is seriously affected by metal contamination from increasing industrial activities. This contribution pertains to the chronic toxicity effects of lead and its biomarker responses on the black clam, Villorita cyprinoides, largely endemic to Southern India. The metal concentration (lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), and chromium (Cr)) and contamination indices such as geoaccumulation index and contamination factor suggests that the Cochin estuarine system (CES) is moderately to heavily polluted with metals. The 96 h effective median lethal concentration (LC50) for Pb was 12.08 mg L-1 at 95% confidence level, whereas the NOEC (no observed effect concentration) and LOEC (lowest observed effect concentration) were 0.46 mg L-1 and 0.83 mg L-1 respectively. The chronic toxicity value for Pb was 0.64 mg L-1. Accumulation of Pb in V. cyprinoides after chronic toxicity test was several-fold higher than exposure concentration. On exposure to sublethal concentrations of lead, gills showed prominent pathological lesions such as damaged lateral cilia, congested hemolymph sinus, damaged abfrontal cilia, damaged ciliary filaments, fusion of gill lamellae, and reduced inter lamellar space. Filtration rate of clams exposed to Pb (86.69 ± 1.98 ml clam-1 h-1) was lower than that in control experiments (191.86 ± 6.48 ml clam-1 h-1). Antioxidant enzymes such as esterase (EST), superoxide dismutase (SOD), and malate dehydrogenase (MDH) exhibited different patterns in isoenzyme activity. Neutral red retention time (NRRT) showed a decrease from control to higher concentrations indicating membrane stability of hemocytic lysosomes decreased with the increasing metal exposure concentration. At LOEC and higher concentrations lysosomes showed enlargement and fragmentation. Lysosomal responses in V. cyprinoides can be used as a key cellular stress biomarker in assessing lead and other metal contamination.


Subject(s)
Bivalvia , Metals, Heavy , Water Pollutants, Chemical , Animals , Environmental Monitoring , India , Lead/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Chemosphere ; 199: 340-350, 2018 May.
Article in English | MEDLINE | ID: mdl-29453060

ABSTRACT

The study was carried out to evaluate enzyme activities and histopathological changes due to the effect of acute and chronic definitive toxicity of selenium (Se) on the post larvae (PL) of giant tiger shrimp (Penaeus monodon), and green mussel (Perna viridis). The 96-h Median Lethal concentration (LC50) for the PL of shrimp was 3.36 mg L-1 and the chronic value for the long-term survival endpoint in a 21-d exposure was 0.10 mg L-1. The green mussel 96-h LC50 was 28.41 mg L-1 and the chronic value for the long-term survival endpoint in a 30-d exposure was 3.06 mg L-1. Native polyacrylamide gel electrophoresis revealed altered diverse isoforms of esterase, superoxide dismutase and malate dehydrogenase activities in the PL of shrimp and green mussel exposed to sublethal concentration of Se. Cellular anomalies such as deformation and fusion of corneal cells, detachment of corneal cells from cornea facet and increased space between ommatidia were observed in the compound eye of PL of shrimp exposed to Se for 21-d. Shrinkage and clumping of mucous gland, degenerative changes in phenol gland, and ciliated epithelium were observed in the foot of green mussel exposed to Se for 30-d. This study shows that cellular anomalies in the compound eye of PL of P. monodon and foot tissues of P. viridis described would affect the vision of shrimp and byssus thread formation in green mussel.


Subject(s)
Penaeidae/drug effects , Perna/drug effects , Selenium/pharmacology , Animals , Cells/pathology , Esterases/drug effects , Malate Dehydrogenase/drug effects , Penaeidae/enzymology , Perna/enzymology , Superoxide Dismutase/drug effects , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...