Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Biol Rep ; 49(6): 4737-4748, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35286518

ABSTRACT

BACKGROUND: The emergence and spread of drug resistance in Vibrio cholerae are mainly attributed to horizontal gene transfer of mobile genetic elements, especially the SXT (sulfamethoxazole and trimethoprim) element, an integrative conjugative element carrying multiple drug resistance genes. SOS (save our souls) bacterial stress response in Vibrio cholerae plays a pivotal role in inducing the SXT element transfer and induction of the CTX prophage, carrying the important virulence factor cholera toxin encoded by the ctxAB gene. METHODS: This study investigated whether the subinhibitory concentration of antibiotics like ciprofloxacin, tetracycline, and azithromycin induce SOS response by detecting the expression of recA and lexA, the key genes of SOS response by reverse transcriptase real time PCR (RT-qPCR). We also studied the transfer of SXT element in response to these three antibiotics by bacterial conjugation. Transfer of SXT elements was confirmed by detecting the SXT element-specific conserved genes. RESULTS: The results of the real-time PCR showed that all three antibiotics induced SOS response with more robust induction by tetracycline and azithromycin relative to ciprofloxacin. We observed a higher frequency of transfer of SXT elements in cultures exposed to these antibiotics and the control mitomycin C compared to unexposed cultures. CONCLUSION: Our study indicates that antibiotics including azithromycin, ciprofloxacin, and tetracycline activate SOS response in Vibrio cholerae and demonstrates a robust mechanism for wide dissemination of drug resistance.


Subject(s)
Vibrio cholerae , Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Ciprofloxacin/pharmacology , DNA Transposable Elements , Gene Transfer, Horizontal/genetics , SOS Response, Genetics/genetics , Tetracyclines , Vibrio cholerae/genetics
2.
J Ethnopharmacol ; 279: 113930, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-33596471

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urb or Indian pennywort is a plant of ethnopharmacological relevance, commonly called as Brahmi in South India known for its antimicrobial property in gut and for the treatment of other gut ailments. Natural anti-virulence drugs that disarm pathogens by directly targeting virulence factors or the cell viability and are thus preferred over antibiotics as these drugs impose limited selection pressure for resistance development. In this regard, an in-vitro experimental study was conducted to know the effect of extract of Centella asiatica(L.) Urb. on cholera toxin, gene expression and its vibriocidal effect on five standard strains of Vibrio cholerae; IDH03097 (El Tor variant), N16961 (El Tor), O395 (Classical) as well as five clinical strains (Haitian variant). AIM OF THE STUDY: To study the effect of extract of Centella asiatica on Vibrio cholerae. MATERIALS AND METHODS: Crude extract was prepared from the leaves and stem part of the plant. The vibriocidal concentration was tested at different concentrations of the extract. The amount of cholera toxin released from the strains before and after exposure to the extract of Centella asiatica to Vibrio cholerae was measured using Bead ELISA. ctxA gene expression in the strains before and after exposure to extract of Centella asiatica was measured using quantitative real time PCR. All the above assays were performed with commercially obtained asiaticoside as well. RESULTS: The vibriocidal activity was tested at the different concentration of the extract, where 1g/mL of crude extract and 12.5mg/mL of asiaticoside was found to be vibriocidal. The amount of cholera toxin released before and after the exposure to extract of C. asiatica was measured using Bead ELISA, showing a reduction of 70%, 89% and 93% toxin produced by classical, El Tor and variant respectively. ctxA gene expression before and after exposure to extract of Centella asiatica as well as asiaticoside was measured using qRT-PCR. We found a decrease in expression of ctxA gene transcription by 6.19 fold in classical strain, 4.29 fold in El Tor, 1.133 fold in variant strains and about 10.13-10.20 fold for the clinical strains of V. cholerae using the extract of C.asiatica while, the reduction with the exposure to the asiaticoside were 2.762 fold in classical strain, 4.809 in El Tor, 24.1 in variant strain and 34.77 - 34.8 for the clinical strains. CONCLUSION: Centella asiatica extract inhibited the CT production in Vibrio cholerae as well as decreased the transcription of ctxA gene expression.


Subject(s)
Cholera Toxin/biosynthesis , Genes, Bacterial/drug effects , Plant Extracts/pharmacology , Triterpenes/pharmacology , Vibrio cholerae/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Centella , Dose-Response Relationship, Drug , Gene Expression Regulation, Bacterial/drug effects , Plant Extracts/administration & dosage , Triterpenes/administration & dosage , Triterpenes/isolation & purification , Vibrio cholerae/genetics
3.
J Med Microbiol ; 69(3): 372-378, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31961790

ABSTRACT

Introduction. The emergence of novel strains of Vibrio cholerae O1 El Tor biotype has gained attention due to causing several epidemics around the world. Variant strains have evolved as a result of the acquisition of genes that confer extended virulence and pathogenicity.Aim. This study aimed to determine the presence of the most recently emerging Haitian-like genetic traits among the isolates from Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, Southern India. We also wanted to detect the prevalence of the sulfamethoxazole and trimethoprim (SXT) element, which is an integrating conjugative element (ICE) and the antimicrobial resistance genes present in our isolates.Methodology. Identification of Haitian-specific alleles was done by mismatched amplification mutation assay PCR (MAMA-PCR). The presence of SXT elements was carried out by PCR by detecting int, eex, att-prfC and setR genes. Detection of antibiotic resistance determinant, sul(1,2,3); dfr(A1,18,5) for trimethoprim resistance, tet(A,B,C,D,E,Y,G,M), tet34 for tetracycline resistance and erm(A,B,C), mph(A,B), ere(A,B), msr(A,D) for azithromycin resistance were targeted by PCR. The MIC of tetracycline, ciprofloxacin and azithromycin was determined by the E-test method.Results. Of the 95 isolates, 60 % of the isolates were found to carry Haitian-specific alleles of ctxB, tcpA and rtxA gene, 100 % of the isolates were found to carry SXT elements. All the isolates harboured the four conserved genes of the SXT element, except one which had only eex, att-prfC, setR genes. About 99 % harboured sul2 and dfrA1 genes. No tet and macrolide genes were detected. We observed a progressive increase in the MIC of azithromycin ranging from 0.75 µg ml-1 to 2 µg ml-1.Conclusion. None of the isolates were the prototype El Tor biotype. All the isolates were a Haitian variant. The presence of SXT elements across all our isolates and their creeping MIC of azithromycin is a matter of concern. Further testing for other genetic determinants of resistance will be carried out in our future studies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Cholera/epidemiology , Drug Resistance, Bacterial/genetics , Vibrio cholerae O1/genetics , Alleles , Cholera/microbiology , Ciprofloxacin/pharmacology , Feces/microbiology , Gene Transfer, Horizontal , Genotype , Haiti , Humans , India/epidemiology , Microbial Sensitivity Tests , Mutation , Phenotype , Polymerase Chain Reaction , Sequence Analysis, DNA , Tetracycline/pharmacology , Vibrio cholerae O1/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...